0

I run the code to train a neural network and I have a warning that the matrix is of zero length, I don't know what happens because I am using that matrix of zeros in the output variable of the neural network.

package main

import (
    "errors"
    "fmt"
    "log"
    "math"
    "math/rand"
    "time"

    "gonum.org/v1/gonum/floats"
    "gonum.org/v1/gonum/mat"
)

// sumAlongAxis sums a matrix along a
// particular dimension, preserving the
// other dimension.
func sumAlongAxis(axis int, m *mat.Dense) (*mat.Dense, error) {

    numRows, numCols := m.Dims()

    var output *mat.Dense

    switch axis {
    case 0:
        data := make([]float64, numCols)
        for i := 0; i < numCols; i++ {
            col := mat.Col(nil, i, m)
            data[i] = floats.Sum(col)
        }
        output = mat.NewDense(1, numCols, data)
    case 1:
        data := make([]float64, numRows)
        for i := 0; i < numRows; i++ {
            row := mat.Row(nil, i, m)
            data[i] = floats.Sum(row)
        }
        output = mat.NewDense(numRows, 1, data)
    default:
        return nil, errors.New("invalid axis, must be 0 or 1")
    }

    return output, nil
}

// sigmoid implements the sigmoid function
// for use in activation functions.
func sigmoid(x float64) float64 {
    return 1.0 / (1.0 + math.Exp(-x))
}

// sigmoidPrime implements the derivative
// of the sigmoid function for backpropagation.
func sigmoidPrime(x float64) float64 {
    return x * (1.0 - x)
}

// neuralNet contains all of the information
// that defines a trained neural network.
type neuralNet struct {
    config  neuralNetConfig
    wHidden *mat.Dense
    bHidden *mat.Dense
    wOut    *mat.Dense
    bOut    *mat.Dense
}

// neuralNetConfig defines our neural network
// architecture and learning parameters.
type neuralNetConfig struct {
    inputNeurons  int
    outputNeurons int
    hiddenNeurons int
    numEpochs     int
    learningRate  float64
}

// NewNetwork initializes a new neural network.
func newNetwork(config neuralNetConfig) *neuralNet {
    return &neuralNet{config: config}
}

// Train trains a neural network using backpropagation.
func (nn *neuralNet) train(x, y *mat.Dense) error {
    // Initialize biases/weights.
    randSource := rand.NewSource(time.Now().UnixNano())
    randGen := rand.New(randSource)

    wHiddenRaw := make([]float64, nn.config.hiddenNeurons*nn.config.inputNeurons)
    bHiddenRaw := make([]float64, nn.config.hiddenNeurons)
    wOutRaw := make([]float64, nn.config.outputNeurons*nn.config.hiddenNeurons)
    bOutRaw := make([]float64, nn.config.outputNeurons)

    for _, param := range [][]float64{wHiddenRaw, bHiddenRaw, wOutRaw, bOutRaw} {
        for i := range param {
            param[i] = randGen.Float64()
        }
    }

    wHidden := mat.NewDense(nn.config.inputNeurons, nn.config.hiddenNeurons, wHiddenRaw)
    bHidden := mat.NewDense(1, nn.config.hiddenNeurons, bHiddenRaw)
    wOut := mat.NewDense(nn.config.hiddenNeurons, nn.config.outputNeurons, wOutRaw)
    bOut := mat.NewDense(1, nn.config.outputNeurons, bOutRaw)

    // Define the output of the neural network.
    output := mat.NewDense(0, 0, nil)

    // Loop over the number of epochs utilizing
    // backpropagation to train our model.
    for i := 0; i < nn.config.numEpochs; i++ {

        // Complete the feed forward process.
        hiddenLayerInput := mat.NewDense(0, 0, nil)
        hiddenLayerInput.Mul(x, wHidden)
        addBHidden := func(_, col int, v float64) float64 { return v + bHidden.At(0, col) }
        hiddenLayerInput.Apply(addBHidden, hiddenLayerInput)

        hiddenLayerActivations := mat.NewDense(0, 0, nil)
        applySigmoid := func(_, _ int, v float64) float64 { return sigmoid(v) }
        hiddenLayerActivations.Apply(applySigmoid, hiddenLayerInput)

        outputLayerInput := mat.NewDense(0, 0, nil)
        outputLayerInput.Mul(hiddenLayerActivations, wOut)
        addBOut := func(_, col int, v float64) float64 { return v + bOut.At(0, col) }
        outputLayerInput.Apply(addBOut, outputLayerInput)
        output.Apply(applySigmoid, outputLayerInput)

        // Complete the backpropagation.
        networkError := mat.NewDense(0, 0, nil)
        networkError.Sub(y, output)

        slopeOutputLayer := mat.NewDense(0, 0, nil)
        applySigmoidPrime := func(_, _ int, v float64) float64 { return sigmoidPrime(v) }
        slopeOutputLayer.Apply(applySigmoidPrime, output)
        slopeHiddenLayer := mat.NewDense(0, 0, nil)
        slopeHiddenLayer.Apply(applySigmoidPrime, hiddenLayerActivations)

        dOutput := mat.NewDense(0, 0, nil)
        dOutput.MulElem(networkError, slopeOutputLayer)
        errorAtHiddenLayer := mat.NewDense(0, 0, nil)
        errorAtHiddenLayer.Mul(dOutput, wOut.T())

        dHiddenLayer := mat.NewDense(0, 0, nil)
        dHiddenLayer.MulElem(errorAtHiddenLayer, slopeHiddenLayer)

        // Adjust the parameters.
        wOutAdj := mat.NewDense(0, 0, nil)
        wOutAdj.Mul(hiddenLayerActivations.T(), dOutput)
        wOutAdj.Scale(nn.config.learningRate, wOutAdj)
        wOut.Add(wOut, wOutAdj)

        bOutAdj, err := sumAlongAxis(0, dOutput)
        if err != nil {
            return err
        }
        bOutAdj.Scale(nn.config.learningRate, bOutAdj)
        bOut.Add(bOut, bOutAdj)

        wHiddenAdj := mat.NewDense(0, 0, nil)
        wHiddenAdj.Mul(x.T(), dHiddenLayer)
        wHiddenAdj.Scale(nn.config.learningRate, wHiddenAdj)
        wHidden.Add(wHidden, wHiddenAdj)

        bHiddenAdj, err := sumAlongAxis(0, dHiddenLayer)
        if err != nil {
            return err
        }
        bHiddenAdj.Scale(nn.config.learningRate, bHiddenAdj)
        bHidden.Add(bHidden, bHiddenAdj)
    }

    nn.wHidden = wHidden
    nn.bHidden = bHidden
    nn.wOut = wOut
    nn.bOut = bOut

    return nil

}

func main() {
    // Define our input attributes.
    input := mat.NewDense(3, 4, []float64{
        1.0, 0.0, 1.0, 0.0,
        1.0, 0.0, 1.0, 1.0,
        0.0, 1.0, 0.0, 1.0,
    })

    // Define our labels.
    labels := mat.NewDense(3, 1, []float64{1.0, 1.0, 0.0})

    // Define our network architecture and
    // learning parameters.
    config := neuralNetConfig{
        inputNeurons:  4,
        outputNeurons: 1,
        hiddenNeurons: 3,
        numEpochs:     5000,
        learningRate:  0.3,
    }

    // Train the neural network.
    network := newNetwork(config)
    if err := network.train(input, labels); err != nil {
        log.Fatal(err)
    }

    // Output the weights that define our network!
    f := mat.Formatted(network.wHidden, mat.Prefix(" "))
    fmt.Printf("\nwHidden = % v\n\n", f)

    f = mat.Formatted(network.bHidden, mat.Prefix(" "))
    fmt.Printf("\nbHidden = % v\n\n", f)

    f = mat.Formatted(network.wOut, mat.Prefix(" "))
    fmt.Printf("\nwOut = % v\n\n", f)

    f = mat.Formatted(network.bOut, mat.Prefix(" "))
    fmt.Printf("\nbOut = % v\n\n", f)
}

desertnaut
  • 57,590
  • 26
  • 140
  • 166
  • Which line of code panics? – Charlie Tumahai Jun 20 '21 at 20:03
  • The line where I declared the output variable, and where I check if there was an error training the network in the main function. goroutine 1 [running]: gonum.org/v1/gonum/mat.NewDense(...) C:/Users/fabri/go/pkg/mod/gonum.org/v1/gonum@v0.9.2/mat/dense.go:50 main.(*neuralNet).train(0xc00010ff30, 0xc000024080, 0xc0000240c0, 0x8f3bc0, 0x952088) D:/Tech/go/src/go-text-classification/main.go:106 +0x870 main.main() D:/Tech/go/src/go-text-classification/main.go:204 +0x2a5 – Fabricio Murillo Jun 20 '21 at 20:10
  • 1
    Please do **not** use the comments space for adding such info - edit & update your post instead. – desertnaut Jun 20 '21 at 20:47

1 Answers1

0

From the documentation for the mat package:

func NewDense(r, c int, data []float64) *Dense

NewDense creates a new Dense matrix with r rows and c columns. If data == nil, a new slice is allocated for the backing slice. If len(data) == r*c, data is used as the backing slice, and changes to the elements of the returned Dense will be reflected in data. If neither of these is true, NewDense will panic. NewDense will panic if either r or c is zero.

So, when you invoke mat.NewDense(0, 0, nil) with both r and c zero, as you do multiple times in your source above, the code panics, just as its documentation says it will. No surprises.

BadZen
  • 4,083
  • 2
  • 25
  • 48
  • I see, thanks for your comment. Then I shouldn't worry about it. However, I don't know why the code does not follow the execution and the outputs in the main function are not printed. Do you recommend something? – Fabricio Murillo Jun 20 '21 at 21:06
  • The execution path of your code certainly invokes a `mat.NewDense()` with invalid arguments before it prints anything ( via the line reading `if err := network.train(input, labels);` in your `main()`) What I recommend is not calling this function with zero arguments, because that is invalid and will panic. – BadZen Jun 20 '21 at 21:20
  • I recieved this help from Gonum creator. It works! outputLayerInput := mat.NewDense(0, 0, nil) is not a valid call. Since you are using it as an empty value, you can either var outputLayerInput mat.Dense and use a & when necessary or outputLayerInput := &mat.Dense{} and keep the rest of your code the same. – Fabricio Murillo Jun 21 '21 at 04:40