We are using stream ingestion from Event Hubs to Azure Data Explorer. The Documentation states the following:
The streaming ingestion operation completes in under 10 seconds, and your data is immediately available for query after completion.
I am also aware of the limitations such as
Streaming ingestion performance and capacity scales with increased VM and cluster sizes. The number of concurrent ingestion requests is limited to six per core. For example, for 16 core SKUs, such as D14 and L16, the maximal supported load is 96 concurrent ingestion requests. For two core SKUs, such as D11, the maximal supported load is 12 concurrent ingestion requests.
But we are currently experiencing ingestion latency of 5 minutes (as shown on the Azure Metrics) and see that data is actually available for querying 10 minutes after ingestion.
Our Dev Environment is the cheapest SKU Dev(No SLA)_Standard_D11_v2 but given that we only ingest ~5000 Events per day (per metric "Events Received") in this environment this latency is very high and not usable in the streaming scenario where we need to have the data available < 1 minute for queries.
Is this the latency we have to expect from the Dev Environment or are the any tweaks we can apply in order to achieve lower latency also in those environments?
How will latency behave with a production environment like Standard_D12_v2? Do we have to expect those high numbers there as well or is there a fundamental difference in behavior between Dev/test and Production Environments in this concern?