I have a dataframe on which I use psych::alpha. In the output there are general confidence boundaries around a general cronbach's alpha value. I want to access those but they don't appear in the results when I save the output as a variable. In the documentation they're called itemboot.ci but that doesn't exist in the alpha object.enter code here
library(psych)
set.seed(1)
foo <- data.frame(X = rnorm(25), Y = rnorm(25), Z = rnorm(25))
bar <- alpha(foo)
alpha(foo)
and bar
both give this output:
Reliability analysis
Call: alpha(x = foo)
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.023 -0.00091 0.0049 -3e-04 -0.00091 0.32 0.12 0.54 0.022
lower alpha upper 95% confidence boundaries
-0.61 0.02 0.66
Reliability if an item is dropped:
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
X 0.039 0.043 0.022 0.022 0.045 0.35 NA 0.022
Y 0.093 0.094 0.049 0.049 0.103 0.36 NA 0.049
Z -0.148 -0.155 -0.072 -0.072 -0.134 0.44 NA -0.072
Item statistics
n raw.r std.r r.cor r.drop mean sd
X 25 0.58 0.56 -0.12 0.0027 0.169 0.95
Y 25 0.41 0.55 -0.36 -0.0296 0.032 0.71
Z 25 0.72 0.62 0.61 0.0543 0.165 1.11
Where
lower alpha upper 95% confidence boundaries
-0.61 0.02 0.66
are the values I want to access and save as a variable.
bar$itemboot.ci
gives NULL even though it's mentioned in the documentation
and even looping through a doesn't show the confidence boundaries:
for(i in 1:length(bar)){
print(bar[i])
}
gives:
$total
raw_alpha std.alpha G6(smc) average_r S/N ase mean sd median_r
0.02297052 -0.000914273 0.004926574 -0.000304572 -0.0009134379 0.323334 0.1221019 0.544037 0.02180445
$alpha.drop
raw_alpha std.alpha G6(smc) average_r S/N alpha se var.r med.r
X 0.03880703 0.04267832 0.02180445 0.02180445 0.04458096 0.3488970 NA 0.02180445
Y 0.09264777 0.09365915 0.04913033 0.04913033 0.10333767 0.3588215 NA 0.04913033
Z -0.14776806 -0.15482062 -0.07184849 -0.07184849 -0.13406464 0.4395377 NA -0.07184849
$item.stats
n raw.r std.r r.cor r.drop mean sd
X 25 0.5843116 0.5644059 -0.1232943 0.002682803 0.16866521 0.9501080
Y 25 0.4056801 0.5486244 -0.3639981 -0.029593160 0.03223135 0.7062806
Z 25 0.7151930 0.6184929 0.6088273 0.054340331 0.16540907 1.1051952
$response.freq
NULL
$keys
X Y Z
1 1 1
$scores
[1] -0.094825557 -0.194726192 -0.655087102 -0.004077450 0.726824345 0.839537022 0.005806616 0.027287230 0.363898646
[10] -0.605834183 1.166134789 -0.014562240 0.003061795 -0.362224119 0.381611153 -0.006888302 -0.691503524 1.035451483
[19] 0.510379244 0.692585766 0.228997248 0.145590611 0.484608087 -1.011931847 0.082433358
$nvar
[1] 3
$boot.ci
NULL
$boot
NULL
$Unidim
$Unidim$Unidim
[1] -0.0006057996
$var.r
[1] 0.004025575
$Fit
$Fit$Fit.off
[1] 0.9973251
$call
alpha(x = foo)
$title
NULL