I am not at all an expert in database design, so I will put my need in plain words before I try to translate it in CS terms: I am trying to find the right way to iterate quickly over large subsets (say ~100Mo of double) of data, in a potentially very large dataset (say several Go). I have objects that basically consist of 4 integers (keys) and the value, a simple struct (1 double 1 short). Since my keys can take only a small number of values (couple hundreds) I thought it would make sense to save my data as a tree (1 depth by key, values are the leaves, much like XML's XPath in my naive view at least).
I want to be able to iterate through subset of leaves based on key values / a fonction of those keys values. Which key combination to filter upon will vary. I think this is call a transversal search ?
So to avoid comparing n times the same keys, ideally I would need the data structure to be indexed by each of the permutation of the keys (12 possibilities: !4/!2 ). This seems to be what boost::multi_index
is for, but, unless I'm overlooking smth, the way this would be done would be actually constructing those 12 tree structure, storing pointers to my value nodes as leaves. I guess this would be extremely space inefficient considering the small size of my values compared to the keys.
Any suggestions regarding the design / data structure I should use, or pointers to concise educational materials regarding these topics would be very appreciated.