I have 16 large datasets of landcover variables around routes. Example dataset "Trial1":
RtNo TYPE CA PLAND NP PD LPI TE
2001 cls_11 996.57 6.4297 22 0.1419 6.3055 31080
2010 cls_11 56.34 0.3654 23 0.1492 0.1669 15480
18003 cls_11 141.12 0.9899 37 0.2596 0.1503 38700
18014 cls_11 797.58 5.3499 47 0.3153 1.3969 98310
2001 cls_21 1514.97 9.7744 592 3.8195 0.8443 761670
2010 cls_21 638.55 4.1414 95 0.6161 0.7489 463260
18003 cls_21 904.68 6.3463 612 4.2931 0.8769 549780
18014 cls_21 1189.89 7.9814 759 5.0911 0.4123 769650
2001 cls_22 732.33 4.7249 653 4.2131 0.7212 377430
2010 cls_22 32.31 0.2096 168 1.0896 0.0198 31470
18003 cls_22 275.85 1.9351 781 5.4787 0.0423 237390
18014 cls_22 469.44 3.1488 104 6.7345 0.1014 377580
I want to first select rows that meet a condition, for example, all rows in column "TYPE" that is cls_21. I know the following code does this work:
Trial21 <-subset(Trial1, TYPE==" cls_21 ")
(yes the invisible space before and after the categorical variable caused me a considerable headache). And there are several other ways of doing this as shown in [https://stackoverflow.com/questions/5391124/select-rows-of-a-matrix-that-meet-a-condition]
I get the following output (sorry this one has extra columns, but shouldn't affect my question):
RtNo TYPE CA PLAND NP PD LPI TE ED LSI
2 18003 cls_21 904.68 6.3463 612 4.2931 0.8769 549780 38.5668 46.1194
18 18014 cls_21 1189.89 7.9814 759 5.0911 0.4123 769650 51.6255 56.2522
34 2001 cls_21 1514.97 9.7744 592 3.8195 0.8443 761670 49.1418 49.3462
50 2010 cls_21 638.55 4.1414 95 0.6161 0.7489 463260 30.0457 46.0118
62 2020 cls_21 625.5 4.1165 180 1.1846 0.5064 384840 25.3268 38.6407
85 2021 cls_21 503.55 2.7926 214 1.1868 0.1178 348330 19.3175 38.9267
I want to rename the columns in this subset so they uniquely identify the class by adding "L21" at the back of existing column names, and I can do this using
library(data.table)
setnames(Trial21, old = c('CA', 'PLAND', 'NP', 'PD', 'LPI', 'TE', 'ED', 'LSI'),
new = c('CAL21', 'PLANDL21', 'NPL21', 'PDL21', 'LPIL21', 'TEL21', 'EDL21', 'LSIL21'))
I want help to develop a function or a loop that automates this process so I don't have to spend days repeating the same codes for 15 different classes and 16 datasets (240 times). Also, decrease the risk of errors. I may have to do the same for additional datasets. Any help to speed the process will be greatly appreciated.