I have a concern in understanding the Cartpole code as an example for Deep Q Learning. The DQL Agent part of the code as follow:
class DQLAgent:
def __init__(self, env):
# parameter / hyperparameter
self.state_size = env.observation_space.shape[0]
self.action_size = env.action_space.n
self.gamma = 0.95
self.learning_rate = 0.001
self.epsilon = 1 # explore
self.epsilon_decay = 0.995
self.epsilon_min = 0.01
self.memory = deque(maxlen = 1000)
self.model = self.build_model()
def build_model(self):
# neural network for deep q learning
model = Sequential()
model.add(Dense(48, input_dim = self.state_size, activation = "tanh"))
model.add(Dense(self.action_size,activation = "linear"))
model.compile(loss = "mse", optimizer = Adam(lr = self.learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
# storage
self.memory.append((state, action, reward, next_state, done))
def act(self, state):
# acting: explore or exploit
if random.uniform(0,1) <= self.epsilon:
return env.action_space.sample()
else:
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
# training
if len(self.memory) < batch_size:
return
minibatch = random.sample(self.memory,batch_size)
for state, action, reward, next_state, done in minibatch:
if done:
target = reward
else:
target = reward + self.gamma*np.amax(self.model.predict(next_state)[0])
train_target = self.model.predict(state)
train_target[0][action] = target
self.model.fit(state,train_target, verbose = 0)
def adaptiveEGreedy(self):
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
In the training section, we found our target and train_target. So why did we set train_target[0][action] = target
here?
Every predict made while learning is not correct, but thanks to error calculation and backpropagation, the predict made at the end of the network will get closer and closer, but when we make train_target[0][action] = target
here the error becomes 0, and in this case, how will the learning be?