When using the Windows-Machine-Learning library, the input and output to the onnx models is often either TensorFloat
or ImageFeatureValue
format.
My question: What is the difference between these? It seems like I am able to change the form of the input in the automatically created model.cs
file after onnx import (for body pose detection) from TensorFloat
to ImageFeatureValue
and the code still runs. This makes it e.g. easier to work with videoframes, since I can then create my input via ImageFeatureValue.CreateFromVideoFrame(frame)
.
Is there a reason why this might lead to problems and what are the differences between these when using videoframes as input, I don't see it from the documentation? Or why does the model.cs script create a TensorFloat
instead of an ImageFeatureValue
in the first place anyway if the input is a videoframe?