I finally managed it basically I load 3 dimensional data stored in hdf5 (I loaded it into hdf5 from raw using python)
It enables viewing transverse slices and annotate 3d pathes in a mask that will be displayed over main image
exmpleH = @spawnat persistenceWorker Main.h5manag.getExample()
minimumm = -1000
maximumm = 2000
arrr= fetch(exmpleH)
imageDim = size(arrr)
using GLMakie
maskArr = Observable(BitArray(undef, imageDim))
MyImgeViewer.singleCtScanDisplay(arrr, maskArr,minimumm, maximumm)
Now definition of the required modules
```@doc
functions responsible for displaying medical image Data
```
using DrWatson
@quickactivate "Probabilistic medical segmentation"
module MyImgeViewer
using GLMakie
using Makie
#using GeometryBasics
using GeometricalPredicates
using ColorTypes
using Distributed
using GLMakie
using Main.imageViewerHelper
using Main.workerNumbers
## getting id of workers
```@doc
simple display of single image - only in transverse plane we are adding also a mask that
arrr - main 3 dimensional data representing medical image for example in case of CT each voxel represents value of X ray attenuation
minimumm, maximumm - approximately minimum and maximum values we can have in our image
```
function singleCtScanDisplay(arrr ::Array{Number, 3}, maskArr , minimumm, maximumm)
#we modify 2 pixels just in order to make the color range constant so slices will be displayed in the same windows
arrr[1,1,:].= minimumm
arrr[2,1,:].= maximumm
imageDim = size(arrr) # dimenstion of the primary image for example CT scan
slicesNumb =imageDim[3] # number of slices
#defining layout variables
scene, layout = GLMakie.layoutscene(resolution = (600, 400))
ax1 = layout[1, 1] = GLMakie.Axis(scene, backgroundcolor = :transparent)
ax2 = layout[1, 1] = GLMakie.Axis(scene, backgroundcolor = :transparent)
#control widgets
sl_x =layout[2, 1]= GLMakie.Slider(scene, range = 1:1: slicesNumb , startvalue = slicesNumb/2 )
sliderXVal = sl_x.value
#color maps
cmwhite = cgrad(range(RGBA(10,10,10,0.01), stop=RGBA(0,0,255,0.4), length=10000));
greyss = createMedicalImageColorSchemeB(200,-200,maximumm, minimumm )
####heatmaps
#main heatmap that holds for example Ct scan
currentSliceMain = GLMakie.@lift(arrr[:,:, convert(Int32,$sliderXVal)])
hm = GLMakie.heatmap!(ax1, currentSliceMain ,colormap = greyss)
#helper heatmap designed to respond to both changes in slider and changes in the bit matrix
currentSliceMask = GLMakie.@lift($maskArr[:,:, convert(Int32,$sliderXVal)])
hmB = GLMakie.heatmap!(ax1, currentSliceMask ,colormap = cmwhite)
#adding ability to be able to add information to mask where we clicked so in casse of mit matrix we will set the point where we clicked to 1
indicatorC(ax1,imageDim,scene,maskArr,sliderXVal)
#displaying
colorB = layout[1,2]= Colorbar(scene, hm)
GLMakie.translate!(hmB, Vec3f0(0,0,5))
scene
end
```@doc
inspired by https://github.com/JuliaPlots/Makie.jl/issues/810
Generaly thanks to this function the viewer is able to respond to clicking on the slices and records it in the supplied 3 dimensional AbstractArray
ax - Axis which store our heatmap slices which we want to observe wheather user clicked on them and where
dims - dimensions of main image for example CT
sc - Scene where our axis is
maskArr - the 3 dimensional bit array that has exactly the same dimensions as main Array storing image
sliceNumb - represents on what slide we are on currently on - ussually it just give information from slider
```
function indicatorC(ax::Axis,dims::Tuple{Int64, Int64, Int64},sc::Scene,maskArr,sliceNumb::Observable{Any})
register_interaction!(ax, :indicator) do event::GLMakie.MouseEvent, axis
if event.type === MouseEventTypes.leftclick
println("clicked")
#@async begin
#appropriately modyfing wanted pixels in mask array
@async calculateMouseAndSetmaskWrap(maskArr, event,sc,dims,sliceNumb)
#
#
# println("fetched" + fetch(maskA))
# finalize(maskA)
#end
return true
#print("xMouse: $(xMouse) yMouse: $(yMouse) compBoxWidth: $(compBoxWidth) compBoxHeight: $(compBoxHeight) calculatedXpixel: $(calculatedXpixel) calculatedYpixel: $(calculatedYpixel) pixelsNumbInX $(pixelsNumbInX) ")
end
end
end
```@doc
wrapper for calculateMouseAndSetmask - from imageViewerHelper module
given mouse event modifies mask accordingly
maskArr - the 3 dimensional bit array that has exactly the same dimensions as main Array storing image
event - mouse event passed from Makie
sc - scene we are using in Makie
```
function calculateMouseAndSetmaskWrap(maskArr, event,sc,dims,sliceNumb)
maskArr[] = calculateMouseAndSetmask(maskArr, event,sc,dims,sliceNumb)
end
end #module
and helper methods
```@doc
functions responsible for helping in image viewer - those functions are meant to be invoked on separate process
- in parallel
```
using DrWatson
@quickactivate "Probabilistic medical segmentation"
module imageViewerHelper
using Documenter
using ColorTypes
using Colors, ColorSchemeTools
using Makie
export calculateMouseAndSetmask
export createMedicalImageColorSchemeB
# using AbstractPlotting
```@doc
given mouse event modifies mask accordingly
maskArr - the 3 dimensional bit array that has exactly the same dimensions as main Array storing image
event - mouse event passed from Makie
sc - scene we are using in Makie
```
function calculateMouseAndSetmask(maskArr, event,sc,dims,sliceNumb)
#position from top left corner
xMouse= Makie.to_world(sc,event.data)[1]
yMouse= Makie.to_world(sc,event.data)[2]
#data about height and width in layout
compBoxWidth = 510
compBoxHeight = 510
#image dimensions - number of pixels from medical image for example ct scan
pixelsNumbInX =dims[1]
pixelsNumbInY =dims[2]
#calculating over which image pixel we are
calculatedXpixel =convert(Int32, round( (xMouse/compBoxWidth)*pixelsNumbInX) )
calculatedYpixel = convert(Int32,round( (yMouse/compBoxHeight)*pixelsNumbInY ))
sliceNumbConv =convert(Int32,round( sliceNumb[] ))
#appropriately modyfing wanted pixels in mask array
return markMaskArrayPatch( maskArr ,CartesianIndex(calculatedXpixel, calculatedYpixel, sliceNumbConv ),2)
end
```@doc
maskArr - the 3 dimensional bit array that has exactly the same dimensions as main Array storing image
point - cartesian coordinates of point around which we want to modify the 3 dimensional array from 0 to 1
```
function markMaskArrayPatch(maskArr, pointCart::CartesianIndex{3}, patchSize ::Int64)
ones = CartesianIndex(patchSize,patchSize,patchSize) # cartesian 3 dimensional index used for calculations to get range of the cartesian indicis to analyze
maskArrB = maskArr[]
for J in (pointCart-ones):(pointCart+ones)
diff = J - pointCart # diffrence between dimensions relative to point of origin
if cartesianTolinear(diff) <= patchSize
maskArrB[J]=1
end
end
return maskArrB
end
```@doc
works only for 3d cartesian coordinates
cart - cartesian coordinates of point where we will add the dimensions ...
```
function cartesianTolinear(pointCart::CartesianIndex{3}) :: Int16
abs(pointCart[1])+ abs(pointCart[2])+abs(pointCart[3])
end
```@doc
creating grey scheme colors for proper display of medical image mainly CT scan
min_shown_white - max_shown_black range over which the gradint of greys will be shown
truemax - truemin the range of values in the image for which we are creating the scale
```
#taken from https://stackoverflow.com/questions/67727977/how-to-create-julia-color-scheme-for-displaying-ct-scan-makie-jl/67756158#67756158
function createMedicalImageColorSchemeB(min_shown_white,max_shown_black,truemax,truemin ) ::Vector{Any}
# println("max_shown_black - truemin + 1")
# println(max_shown_black - truemin + 1)
# println(" min_shown_white - max_shown_black - 1")
# println( min_shown_white - max_shown_black - 1)
# println("truemax - min_shown_white + 1")
# println(truemax - min_shown_white + 1)
return [fill(colorant"black", max_shown_black - truemin + 1);
collect(make_colorscheme(identity, identity, identity,
length = min_shown_white - max_shown_black - 1));
fill(colorant"white", truemax - min_shown_white + 1)]
end
end #module
