I am building a random intercept model in R using the glmer
function, with the 2nd level variable being country. When I run my model however, it is only including 24 countries and 27005 observations when there are 60 countries and 75047 observations.
I can provide other info if necessary but just wondering if anyone has any initial idea why this might be. I cannot find anything online.
Generalized linear mixed model fit by maximum likelihood (Adaptive Gauss-Hermite Quadrature, nAGQ = 0) ['glmerMod']
Family: binomial ( logit )
Formula: serve ~ age + sex + income + religion + proud + trusting + outgoing + (1 | country)
Data: WVS
Control: glmerControl(optimizer = "bobyqa")
AIC BIC logLik deviance df.resid
30102.4 30250.1 -15033.2 30066.4 26987
Scaled residuals:
Min 1Q Median 3Q Max
-4.2087 -0.8943 0.4331 0.6737 3.8525
Random effects:
Groups Name Variance Std.Dev.
country (Intercept) 0.6272 0.7919
Number of obs: 27005, groups: country, 24
Fixed effects:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.188730 0.181939 1.037 0.299584
age -0.004503 0.001229 -3.666 0.000247 ***
sexmale 0.672997 0.028757 23.403 < 2e-16 ***
income -0.005812 0.007070 -0.822 0.411024
religionRather important 0.117421 0.049464 2.374 0.017604 *
religionVery important 0.269977 0.048460 5.571 2.53e-08 ***
proud2 -0.210176 0.033430 -6.287 3.23e-10 ***
proud3 -0.306502 0.054530 -5.621 1.90e-08 ***
proud4 -0.601837 0.099568 -6.044 1.50e-09 ***
trusting2 0.134689 0.055366 2.433 0.014987 *
trusting3 0.195169 0.056104 3.479 0.000504 ***
trusting4 0.309589 0.054498 5.681 1.34e-08 ***
trusting5 0.294739 0.059784 4.930 8.22e-07 ***
outgoing2 -0.160543 0.062618 -2.564 0.010352 *
outgoing3 -0.119559 0.062781 -1.904 0.056861 .
outgoing4 0.120816 0.060180 2.008 0.044689 *
outgoing5 0.238158 0.063453 3.753 0.000175 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Here is a sample of the data:
conscription serve country sex education income religion immigrant proud trusting outgoing age
1 1 Yes ALG male 3 5 Very important 0 1 2 2 -15.7403361
2 1 Yes ALG female 3 6 Rather important 0 2 4 2 -12.7403361
3 1 Yes ALG female 3 6 Very important 0 1 3 3 -10.7403361
4 1 Yes ALG female 3 5 Very important 0 1 3 4 -8.7403361
5 1 Yes ALG female 2 7 Very important 0 1 4 4 -1.7403361
6 1 Yes ALG male 4 5 Very important 0 1 3 4 -0.7403361
7 1 Yes ALG male 3 7 Very important 0 1 2 2 4.2596639
8 1 Yes ALG female 2 2 Rather important 0 1 3 4 7.2596639
9 1 Yes ALG male 1 5 Rather important 0 1 3 2 22.2596639
11 1 Yes ALG female 4 5 Very important 0 1 3 1 -13.7403361