I have a Pandas DataFrame with 6 rows and 11 columns which contains a float64 array with a single value in each cell. The cells in the dataframe look like this:
And this is what I get after transforming the dataframe to a dictionary:
{'AO': {"W": [-0.09898120815033484],
"X": [0.025084149326805416],
"Y": [-0.043670609717370634],
"Z": [-0.07389705882352943],
"A": [-0.018586460390565218],
"B": [-0.11756766854090006]},
'DR': {"W": [0.8163265306122449],
"X": [1.0814940577249577],
"Y": [0.8759551706571573],
"Z": [0.8828522920203735],
"A": [0.9473403118991668],
"B": [0.7733390301217689]},
'DP': {"W": [-0.14516129032258063],
"X": [0.05955334987593053],
"Y": [-0.10348491287717809],
"Z": [-0.0856079404466501],
"A": [-0.043931563001247564],
"B": [-0.1890928533238282]},
'PD': {"W": [-0.1255102040816326],
"X": [0.09129967776584313],
"Y": [-0.13698152666434293],
"Z": [-0.03421052631578947],
"A": [-0.0456818488984998],
"B": [-0.1711920529801324]}}
Where the indexes of each row are W,X,Y,Z,A, and B. I want to get rid of all of the numpy array structures in each cell and flatten this DataFrame so that I can only have the int/float values in each cell. How can I do this?