I am trying to normalize a dataset using min- max normalizer.
from sklearn import preprocessing
x = df1.values #returns a numpy array
min_max_scaler = preprocessing.MinMaxScaler()
x_scaled = min_max_scaler.fit_transform(x)
df1 = pd.DataFrame(x_scaled)
Inupt
PID | FNID | ID
-----------------
10 | 15 | 20
11 | 16 | 21
Expected Output
PID | FNID |ID
---------------
0.1 | 0.15 | 0.2
0.11| 0.16 | 0.21
But I am getting output like..
0 | 1 | 2
----------------
0.1 | 0.15 | 0.2
0.11| 0.16 |0.21
I want the headers as in the original dataset. I tried This.