I write a classifier using data keras cifar10, I want to recognize only two classes, not all 10. I have a problem because when I learn for all 10 classes, the program works well and learns correctly, but when I take data only for two classes then I have a ValueError error: Data cardinality is ambiguous, Make sure all arrays contain the same number of samples. I don't understand why the error is because the data looks correct
from keras.datasets import cifar10
from matplotlib import pyplot as plt
from keras.utils import to_categorical
import numpy as np
from sklearn.model_selection import train_test_split
data = cifar10.load_data()
X=data[0][0].astype('float32') / 255.0
y=to_categorical(data[0][1])
X_new = []
y_new = []
# Split data to 2 classes
for x_change,y_change in zip (X, y):
if y_change[0] == 1 or y_change[1] == 1:
X_new.append(x_change)
y_new.append(y_change)
X_train, X_test, y_train, y_test = train_test_split(X_new, y_new, test_size=0.3)
for i in range(10):
print(y_train[i])
plt.imshow(X_train[i])
plt.show()
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Dense
from keras.layers import Flatten
model3 = Sequential()
model3.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model3.add(MaxPooling2D((2, 2)))
model3.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model3.add(MaxPooling2D((2, 2)))
model3.add(Conv2D(32, (3, 3), activation='relu', input_shape=(32, 32, 3)))
model3.add(MaxPooling2D((2, 2)))
model3.add(Flatten())
model3.add(Dense(10, activation='softmax'))
model3.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
history = model3.fit(X_train, y_train, epochs=600, batch_size=64, validation_data=(X_test, y_test))