import pandas as pd
import numpy as np
df = pd.DataFrame({'Number':[np.linspace(0,10,11,dtype=int)],'Year':[np.linspace(2000,2010,11,dtype=int)],'Person':[np.linspace(10,20,11,dtype=int)],'Age':[np.linspace(30,40,11,dtype=int)]})
df
Asked
Active
Viewed 434 times
0

Andrej Kesely
- 168,389
- 15
- 48
- 91

Nishant
- 1
-
If you are looking for integer range, just use `arange`... – Quang Hoang May 10 '21 at 18:35
-
is this a question about construction of the dataframe or using an existing dataframe? – anky May 10 '21 at 18:40
-
1the question is about the construction of the dataframe - @anky – Nishant May 10 '21 at 18:47
-
remove the bracket around linspace: `df = pd.DataFrame({'Number':np.linspace(0,10,11,dtype=int),'Year':np.linspace(2000,2010,11,dtype=int),'Person':np.linspace(10,20,11,dtype=int),'Age':np.linspace(30,40,11,dtype=int)})` – dallonsi May 11 '21 at 09:10
1 Answers
2
Remove [ ]
around your values:
import pandas as pd
import numpy as np
df = pd.DataFrame(
{
"Number": np.linspace(0, 10, 11, dtype=int),
"Year": np.linspace(2000, 2010, 11, dtype=int),
"Person": np.linspace(10, 20, 11, dtype=int),
"Age": np.linspace(30, 40, 11, dtype=int),
}
)
print(df)
Prints:
Number Year Person Age
0 0 2000 10 30
1 1 2001 11 31
2 2 2002 12 32
3 3 2003 13 33
4 4 2004 14 34
5 5 2005 15 35
6 6 2006 16 36
7 7 2007 17 37
8 8 2008 18 38
9 9 2009 19 39
10 10 2010 20 40
EDIT: As stated in comments, you can use range()
or np.arange
as well...

Andrej Kesely
- 168,389
- 15
- 48
- 91