I am implementing a version of the Very Large Scale Relieff algorithm detailed here.
Simply put, Very Large Scale Relieff split the set of features N
into several random subsets Ns
where Ns << N
. Then it calculates the Relieff weights for the features in the subset Ns
. For each feature, the final weight will be the highest weight assigned among the different subsets were that particular feature appear.
I have ~80000 features for ~100 subjects. I can calculate 10000 subsets of 8000 features each in a reasonable amount of time (~5 minutes running on 25 cores) with the following code (that is scaled down to 100 features in order to be easier to profile):
library(tidyverse)
library(magrittr)
library(CORElearn)
library(doParallel)
#create fake data for example
fake_table <- matrix(rnorm(100*100), ncol = 100) %>%
as_tibble()
outcome <- rnorm(100)
#create fake data for example
#VLSRelieff code
start_time <- Sys.time()
myCluster <- makeCluster(25, # number of cores to use
type = "FORK")
registerDoParallel(myCluster)
result <- foreach(x = seq(1,10000)) %dopar% {
#set seed for results consistency among different run
set.seed(x)
#subsample the features table by extracting a subset of columns
subset_index <- sample(seq(1,ncol(fake_table)),size = round(ncol(fake_table)*.01))
subset_matrix <- fake_table[,subset_index]
#assign the outcome as last column of the subset
subset_matrix[,ncol(subset_matrix)+1] <- outcome
#use the function attrEval from the CORElearn package to calculate the Relieff weights for the subset
rf_weights <- attrEval(formula = ncol(subset_matrix), subset_matrix, estimator = "RReliefFequalK")
#create a data frame with as many columns as features in the subset and only one row
#with the Relieff weigths
rf_df <- rf_weights %>%
unname() %>%
matrix(., ncol = length(.), byrow = TRUE) %>%
as_tibble() %>%
set_colnames(., names(rf_weights))}
end_time <- Sys.time()
end_time - start_time
However, the code above does only half of the work: the other half is, for each feature, to go into the results of the different repetitions and find the maximum value obtained. I have managed to write a working code, but it is outrageously slow (I let it run for 2 hours before stopping it, although it worked on testing with fewer features - again, here it is scaled down to 100 features and should run in ~7 seconds):
start_time <- Sys.time()
myCluster <- makeCluster(25, # number of cores to use
type = "FORK")
registerDoParallel(myCluster)
#get all features name
feat_names <- colnames(fake_table)
#initalize an empty vector of zeros, with the names of the features
feat_wegiths <- rep(0, length(feat_names))
names(feat_wegiths) <- feat_names
#loop in parallel on the features name, for each feature name
feat_weight_foreach <- foreach(feat = feat_names, .combine = 'c') %dopar% {
#initalize the weight as 0
current_weigth <- 0
#for all element in result (i.e. repetitions of the subsampling process)
for (el in 1:length(result)){
#assign new weight accessing the table
new_weigth <- result[[el]][[1,feat]]
#skip is empty (i.e. the features is not present in the current subset)
if(is_empty(new_weigth)){next}
#if new weight is higher than current weight assign the value to current weight
if (current_weigth < new_weigth){
current_weigth <- new_weigth}}
current_weigth
}
end_time <- Sys.time()
end_time - start_time