I am developing a code to use the pre-trained GPT2 model for a machine translation task. The length of my data's word-to-id is 91, and I developed the following code for my model:
import torch
from torch.utils.data import DataLoader
from transformers.models.gpt2.modeling_gpt2 import GPT2Model
# data preparation code
def batch_sequences(x, y, env):
"""
Take as input a list of n sequences (torch.LongTensor vectors) and return
a tensor of size (slen, n) where slen is the length of the longest
sentence, and a vector lengths containing the length of each sentence.
"""
lengths_x = torch.LongTensor([len(s) + 2 for s in x])
lengths_y = torch.LongTensor([len(s) + 2 for s in y])
max_length = max(lengths_x.max().item(), lengths_y.max().item())
sent_x = torch.LongTensor(
max_length, lengths_x.size(0)).fill_(env.pad_index)
sent_y = torch.LongTensor(
max_length, lengths_y.size(0)).fill_(env.pad_index)
assert lengths_x.min().item() > 2
assert lengths_y.min().item() > 2
sent_x[0] = env.eos_index
for i, s in enumerate(x):
sent_x[1:lengths_x[i] - 1, i].copy_(s)
sent_x[lengths_x[i] - 1, i] = env.eos_index
sent_y[0] = env.eos_index
for i, s in enumerate(y):
sent_y[1:lengths_y[i] - 1, i].copy_(s)
sent_y[lengths_y[i] - 1, i] = env.eos_index
return sent_x, sent_y, max_length
def collate_fn(elements):
"""
Collate samples into a batch.
"""
x, y = zip(*elements)
x = [torch.LongTensor([env.word2id[w]
for w in seq if w in env.word2id]) for seq in x]
y = [torch.LongTensor([env.word2id[w]
for w in seq if w in env.word2id]) for seq in y]
x, y, length = batch_sequences(x, y, env)
return (x, length), (y, length), torch.LongTensor(nb_ops)
loader = DataLoader(data, batch_size=1, shuffle=False, collate_fn=collate_fn)
gpt2 = GPT2Model.from_pretrained('gpt2')
in_layer = nn.Embedding(len(env.word2id), 768)
out_layer = nn.Linear(768, len(env.word2id))
parameters = list(gpt2.parameters()) + list(in_layer.parameters()) + list(out_layer.parameters())
optimizer = torch.optim.Adam(parameters)
loss_fn = nn.CrossEntropyLoss()
for layer in (gpt2, in_layer, out_layer):
layer.train()
accuracies = list()
n_epochs = 5
for i in range(n_epochs):
for (x, x_len), (y, y_len) in loader:
x = x.to(device=device)
y = y.to(device=device)
embeddings = in_layer(x.reshape(1, -1))
hidden_state = gpt2(inputs_embeds=embeddings).last_hidden_state[:, :]
logits = out_layer(hidden_state)[0]
loss = loss_fn(logits, y.reshape(-1))
accuracies.append(
(logits.argmax(dim=-1) == y.reshape(-1)).float().mean().item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
if len(accuracies) % 500 == 0:
accuracy = sum(accuracies[-50:]) / len(accuracies[-50:])
print(f'Samples: {len(accuracies)}, Accuracy: {accuracy}')
This code works pretty well when the batch size is 1. But it is so slow. I wanted to increase the batch size from 1 to 32, but I get some dimension compatibility problems. How can I increase the batch size without errors?
My data consists of pair of sentences, the first one is a sentence in the first language and the second one is its translation in the second language.
For example, assume that x.shape is (batch_size, 12) (meaning we have 'batch_size' sentences of length 12 as input and y.shape is also (batch_size, 12) (the translations). And also we have a word-to-id dictionary of length 90 that matches each word in a sentence with its index)