I have a program whose main performance bottleneck involves multiplying matrices which have one dimension of size 1 and another large dimension, e.g. 1000:
large_dimension = 1000
a = np.random.random((1,))
b = np.random.random((1, large_dimension))
c = np.matmul(a, b)
In other words, multiplying matrix b
with the scalar a[0]
.
I am looking for the most efficient way to compute this, since this operation is repeated millions of times.
I tested for performance of the two trivial ways to do this, and they are practically equivalent:
%timeit np.matmul(a, b)
>> 1.55 µs ± 45.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
%timeit a[0] * b
>> 1.77 µs ± 34.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
Is there a more efficient way to compute this?
- Note: I cannot move these computations to a GPU since the program is using multiprocessing and many such computations are done in parallel.