I wrote an mlp and want start to tune it to fit a best results. But i've stucked with several different MSE.
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn import metrics
import numpy
import joblib
# load dataset
#dataframe = read_csv("housing.csv", delim_whitespace=True, header=None)
dataframe = read_csv("100.csv", header=None)
dataset = dataframe.values
# split into input (X) and output (Y) variables
X = dataset[:,0:6]
Y = dataset[:,6]
# define the model
def larger_model():
# create model
model = Sequential()
model.add(Dense(20, input_dim=6, kernel_initializer='normal', activation='relu'))
model.add(Dense(50, kernel_initializer='normal', activation='relu'))
model.add(Dense(1, kernel_initializer='normal', activation='linear'))
# Compile model
model.compile(loss='mean_squared_error', optimizer='adam', metrics=['mae','mse'])
return model
# evaluate model with standardized dataset
estimators = []
estimators.append(('standardize', StandardScaler()))
estimators.append(('mlp', KerasRegressor(build_fn=larger_model, epochs=100, batch_size=5, verbose=1)))
pipeline = Pipeline(estimators)
kfold = KFold(n_splits=2)
results = cross_val_score(pipeline, X, Y, cv=kfold)
pipeline.fit(X, Y)
prediction = pipeline.predict(X)
result_test = Y
print("%.2f (%.2f) MSE" % (results.mean(), results.std()))
print('Mean Absolute Error:', metrics.mean_absolute_error(prediction, result_test))
print('Mean Squared Error:', metrics.mean_squared_error(prediction, result_test))
Gives me that result:
Epoch 98/100
200/200 [==============================] - 0s 904us/step - loss: 0.0086 - mae: 0.0669 - mse: 0.0086
Epoch 99/100
200/200 [==============================] - 0s 959us/step - loss: 0.0032 - mae: 0.0382 - mse: 0.0032
Epoch 100/100
200/200 [==============================] - 0s 894us/step - loss: 0.0973 - mae: 0.2052 - mse: 0.0973
200/200 [==============================] - 0s 600us/step
21.959478
-0.03 (0.02) MSE
Mean Absolute Error: 0.1959771416462339
Mean Squared Error: 0.0705598179059006
So i see here a 3 different mse results. Why so and which one i should take in mind to understand an overall model score when i willbe tune it?