I know that I can do parallel computing in R however I am having trouble setting it up in a way that it works with my modeling approach.
Here is how I set load / set up the parallel computing
library(doParallel) # Parallel Computing
cores <- detectCores() - 1
cluster <- makePSOCKcluster(cores)
registerDoParallel(cluster)
Later on in my markdown book, I have the following code to create, tune and fit a workflow for a support vector machine using a polynomial kernel.
tune_cv_folds <- vfold_cv(data = train_baked, v = 10)
tune_spec <- svm_poly(cost = tune(), degree = tune(), margin = tune()) %>%
set_engine("kernlab") %>%
set_mode("classification")
tune_wf <- workflow() %>%
add_model(tune_spec) %>%
add_formula(win ~ .)
tune_res <-
tune_wf %>%
tune_grid(
resamples = tune_cv_folds,
grid = 10)
paramvalue <- tune_res %>% select_best("roc_auc")
fit <- svm_poly(cost = paramvalue$cost, degree = paramvalue$degree, margin = paramvalue$degree) %>%
set_engine("kernlab") %>%
set_mode("classification")
wf <- workflow() %>% add_model(poly_fit) %>% add_formula(win ~.) %>% fit(data = train_baked)
poly_fit <- poly_wf %>% pull_workflow_fit()
summary(poly_fit)
My question here is how do I enable parallel computing for the following?
tune_wf <- workflow() %>%
add_model(tune_spec) %>%
add_formula(win ~ .)