I have a dataset with both numeric and categorical variables, which I would like to include in a generalized mixed model. When I do so, the ouptut of the conditional model always "forgets" one category.
For example, in this model I include the proportion of vigilance on the total time of detected per video as response variable, and as explanatory variables: urine intensity (numeric), treatment (0 for no urine, 1 for urine), diel_period (dawn, dusk, night, day), sex (Male, Female, Undefined), height (of trees, numeric). And my 50 cameras as a random grouping effect (1 to 50).
bBI_mod8 <- glmmTMB(cbind(vigilance, total_time_behaviour - vigilance) ~
urine_intensity_heatmap + treatment + diel_period + sex + height + (1|camera),
ziformula = ~1, data = df_behaviour, family = "betabinomial")
The vigilance proportion follows a zero-inflated beta binomial regression.
summary(bBI_mod8)
When I show the output, I observe:
Family: betabinomial ( logit )
Formula: cbind(vigilance, total_time_behaviour - vigilance) ~ urine_intensity_heatmap +
treatment + diel_period + sex + height + (1 | camera)
Zero inflation: ~1
Data: df_behaviour
AIC BIC logLik deviance df.resid
2973.8 3037.1 -1474.9 2949.8 1439
Random effects:
Conditional model:
Groups Name Variance Std.Dev.
camera (Intercept) 0.1583 0.3979
Number of obs: 1451, groups: camera, 50
Overdispersion parameter for betabinomial family (): 1.85
Conditional model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.907429 0.471376 -1.925 0.054222 .
urine_intensity_heatmap -0.009844 0.004721 -2.085 0.037034 *
treatment1 -0.219403 0.154396 -1.421 0.155304
diel_periodDay -0.337329 0.235033 -1.435 0.151218
diel_periodDusk -0.543771 0.285322 -1.906 0.056675 .
diel_periodNight -0.553826 0.274879 -2.015 0.043925 *
sexMale -0.772731 0.168350 -4.590 4.43e-06 ***
sexUndefined -1.010425 0.271876 -3.716 0.000202 ***
height 0.001713 0.012352 0.139 0.889681
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Zero-inflation model:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.6685 0.4298 -1.556 0.12
My problem is, as you can see, for my categorical variables, there is always one category that is omitted:
treatment1
but not treatment0
diel_periodDay
, diel_periodDusk
, diel_periodNight
but not diel_periodDawn
sexMale
, sexUndefined
but not sexFemale
How can I solve this problem? Or how can I show a completer output?