1

I have two charts. When I zoom in on the top or bottom chart the x-axis both update and show the same date range which is great. The problem is the y-axis on both charts is quite different so when say I zoom in on the top chart both the x & y axis's scale accordingly. On the bottom chart though the x-axis scales accordingly but the y-axis doesn't. I can't use the y_range=fig.y_range as the y ranges are very different.

Is it possible that when I zoom in on the top chart for the bottom chart's y-axis to be scaled accordingly when both charts have different y-axis ranges?

update - what I mean by accordingly

Say my x-axis goes from 1st Jan 2020 to 31st December 2020. Now say I zoom in on say on the whole of July 2020 on the top chart using the inbuilt tools, the bottom chart's x-axis adjusts accordingly automatically, i.e. the x-axis is now zoomed in on the whole of July on both charts. This work brilliantly by using the line x_range=fig.x_range. Both charts share the same x-axis.

However their y-axis are different so I can't use y_range=fig.y_range.

So what I want to do is when say I zoom in on the top chart & both the x & y axis's automatically re-scale. I want the bottom chart y-axis to also rescale (the x-axis as already mentioned do this automatically).

my code below

cds = ColumnDataSource(data=df)   

fig = figure(plot_width=W_PLOT, plot_height=H_PLOT, 
             tools=TOOLS,
             x_axis_type="datetime",
             title=name,
             toolbar_location='above')

# lets add a moving average
fig.line(x='time_stamp', y='ma_20', source=cds, legend_label='MA 20')

fig_ind = figure(plot_width=W_PLOT, plot_height=H_PLOT_IND,
                 tools=TOOLS,
                 x_axis_type="datetime",
                 x_range=fig.x_range)

fig_ind.line(x='time_stamp', y='ma_100', source=cds, legend_label='MA 100')

show(gridplot([[fig],[fig_ind]]))
mHelpMe
  • 6,336
  • 24
  • 75
  • 150

1 Answers1

1

Here's how to achieve this using a CustomJS callback on the common X range:

from bokeh.models.ranges import DataRange1d
from bokeh.layouts import column
from bokeh.models.sources import ColumnDataSource
from bokeh.models import CustomJS

import pandas as pd
import numpy as np


df = pd.DataFrame(
    {
        'fig1_y': np.linspace(0, 100, 100),
        'fig2_y': np.linspace(0, 1000, 100),
        'common_x': pd.date_range(
            start='2020-01-01',
            end='2021-01-01',
            periods=100
        )
    }
)

cds = ColumnDataSource(data=df)

common_x_range = DataRange1d(bounds='auto')

fig = figure(
    plot_width=500,
    plot_height=200,
    x_axis_type="datetime",
    x_range=common_x_range
)

fig.line(
    x='common_x',
    y='fig1_y',
    source=cds,
    legend_label='MA 20'
)

fig2 = figure(
    plot_width=500,
    plot_height=200,
    x_axis_type="datetime",
    x_range=common_x_range,
    y_range=DataRange1d(bounds='auto')
)

fig2.line(
    x='common_x',
    y='fig2_y',
    source=cds,
    legend_label='MA 100'
)


callback = CustomJS(
    args={
        'y_range': fig2.y_range,
        'source': cds
    }, code='''
    var x_data = source.data.common_x,
        fig2_y = source.data.fig2_y,
        start = cb_obj.start,
        end = cb_obj.end,
        min = Infinity,
        max = -Infinity;

    for (var i=0; i < x_data.length; ++i) {
        if (start <= x_data[i] && x_data[i] <= end) {
            max = Math.max(fig2_y[i], max);
            min = Math.min(fig2_y[i], min);
        }
    }
    
    y_range.start = min
    y_range.end = max
''')
common_x_range.js_on_change('start', callback)
common_x_range.js_on_change('end', callback)

show(column([fig,fig2]))
gshpychka
  • 8,523
  • 1
  • 11
  • 31