I have a problem while running this foreground detection code from this website
this is my code (i did slight change, to fit the latest opencv
version):
import numpy as np
import cv2
import keras
from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model
import tensorflow as tf
from tensorflow.compat.v1 import ConfigProto
from tensorflow.compat.v1 import InteractiveSession
config = ConfigProto()
config.gpu_options.allow_growth = True
session = InteractiveSession(config=config)
#Load CNN Model
model = load_model("VGG16withALLTRAINABLE (Currently Best Model).h5")
#Creating ROI frame for capturing hand
top_ROI = 100
btm_ROI = 300
right_ROI = 50
left_ROI = 250
#Creating Background Removal Parameters
blur_size = 5
canny_low = 25
# min_area = 0
# max_area = 0
canny_high = 150
dilate_iter = 10
erode_iter = 10
mask_color = (0.0,0.0,0.0)
#Video Capture
cap = cv2.VideoCapture(0)
while True:
ret,frame = cap.read()
#flipping frame
# frame = cv2.flip(frame, 1)
#Create ROI inside Frame
roi = frame[top_ROI:btm_ROI, right_ROI:left_ROI]
cv2.rectangle(frame, (left_ROI, top_ROI), (right_ROI,btm_ROI), (255,128,0), 3) #Visual Rectangle for ROI
#Resizing and Reshaping to equalize model input size and shape
roi = cv2.resize(roi, (300, 300))
blurred_roi = cv2.GaussianBlur(roi, (blur_size,blur_size) , 0)
gray_roi = cv2.cvtColor(blurred_roi, cv2.COLOR_BGR2GRAY)
edge = cv2.Canny(gray_roi, canny_low, canny_high)
edge = cv2.dilate(edge, None)
edge = cv2.erode(edge, None)
cntr = []
cntr_area = []
contours,_= cv2.findContours(edge, cv2.RETR_LIST, cv2.CHAIN_APPROX_NONE)
contour_info = []
# for contour in contours:
# cntr.append(contour)
# # cntr_area.append(cv2.contourArea(contour))
# area = cv2.contourArea(contour)
# cntr = np.array(cntr)
# cntr_area = np.array(cntr_area)
# print(area)
for c in contours:
contour_info.append((c,cv2.contourArea(c), ))
contour_info = np.array(contour_info)
contour_info = sorted(contour_info, key=lambda x: x[1], reverse=True)
max_contour = contour_info[0]
mask = np.zeros(edge.shape)
cv2.fillConvexPoly(mask, max_contour[0], (255))
mask = cv2.dilate(mask, None, iterations=dilate_iter)
mask = cv2.erode(mask, None, iterations=erode_iter)
mask = cv2.GaussianBlur(mask, (blur_size, blur_size), 0)
mask_stack = np.dstack([mask]*3) # Create 3-channel alpha mask
#-- Blend masked img into MASK_COLOR background --------------------------------------
mask_stack = mask_stack.astype('float32') / 255.0 # Use float matrices,
roi = roi.astype('float32') / 255.0 # for easy blending
masked = (mask_stack * roi) + ((1-mask_stack) * mask_color) # Blend
masked = (masked * 255).astype('uint8') # Convert back to 8-bit
print(mask.shape)
print(mask_stack.shape)
# prediction_box = np.reshape(roi,(1,roi.shape[0],roi.shape[1],3))
#Prediction
# pred = model.predict(prediction_box)
# pred_class = np.argmax(pred)
# if pred_class == 0:
# pred_class = "A"
# elif pred_class == 1:
# pred_class = "B"
# elif pred_class == 2:
# pred_class = "C"
# elif pred_class == 3:
# pred_class = "D"
# elif pred_class == 4:
# pred_class = "E"
# elif pred_class == 5:
# pred_class = "F"
# elif pred_class == 6:
# pred_class = "G"
# elif pred_class == 7:
# pred_class = "H"
# elif pred_class == 8:
# pred_class = "I"
# elif pred_class == 9:
# pred_class = "J"
# elif pred_class == 10:
# pred_class = "K"
# elif pred_class == 11:
# pred_class = "L"
# elif pred_class == 12:
# pred_class = "M"
# elif pred_class == 13:
# pred_class = "N"
# elif pred_class == 14:
# pred_class = "O"
# elif pred_class == 15:
# pred_class = "P"
# elif pred_class == 16:
# pred_class = "Q"
# elif pred_class == 17:
# pred_class = "R"
# elif pred_class == 18:
# pred_class = "S"
# elif pred_class == 19:
# pred_class = "T"
# elif pred_class == 20:
# pred_class = "U"
# elif pred_class == 21:
# pred_class = "V"
# elif pred_class == 22:
# pred_class = "W"
# elif pred_class == 23:
# pred_class = "X"
# elif pred_class == 24:
# pred_class = "Y"
# elif pred_class == 25:
# pred_class = "Z"
# elif pred_class == 26:
# pred_class = "del"
# elif pred_class == 27:
# pred_class = "nothing"
# elif pred_class == 28:
# pred_class = "space"
# cv2.putText(frame, pred_class ,(10, 80), cv2.FONT_ITALIC, 3, (51,255,51), 5)
cv2.imshow("Frame", frame)
cv2.imshow("ROI", gray_roi)
cv2.imshow("Edges", edge)
cv2.imshow('Mask', masked)
key = cv2.waitKey(1)
if key == 27:
break
cap.release()
cv2.destroyAllWindows()
My problem is, the output showing an inconsistent foreground detection. can someone help me what i did wrong ??
Outputs : input image and outputs (the MASK frame is the bg removal result, but the removal is inconsistent, almost cant remove my bg perfectly)