So the error was as follows:
library(mlr3verse)
preformace_msr <- msr("classif.fbeta", beta = 1.5)
#> Error: Cannot set argument 'beta' for 'MeasureBinaryimple' (not a constructor argument, not a parameter, not a field.
I think this has to do with the fact that only the F1-Measure (not F1.5-measure etc.) has been implemented in mlr3
. See beta=1
in the source file.
In the mlr3 book you will find following under 6.3:
In this section we showcase how to implement a custom performance
measure.
According to this section, you could implement an Fx-Measure with (I think my syntax is not the best/safest, but it should work):
library(mlr3verse)
library(mlr3measures)
library(R6)
# make custom measure:
MeasureCustomFbeta = R6::R6Class("classif.custom_fbeta",
inherit = mlr3::MeasureClassif,
public = list(
#declase field
beta=NULL, #delcare field
initialize = function(beta) {
self$beta <- beta
super$initialize(
# custom id for the measure
id = "custom_fbeta",
# required predict type of the learner
predict_type = "response",
# feasible range of values
range = c(0, Inf),
# minimize during tuning?
minimize = TRUE
)
}
),
private = list(
# customized scoring function operating on the prediction object
.score = function(prediction, ...) {
fbeta_cm = function(m, beta) {
pred_pos = sum(m[1L, ])
cond_pos = sum(m[, 1L])
if (m[1L, 1L] == 0L || pred_pos == 0L || cond_pos == 0L)
return(na_value)
P = m[1L, 1L] / pred_pos
R = m[1L, 1L] / cond_pos
((1 + beta^2) * P * R) / ((beta^2 * P) + R)
}
fbeta_cm(confusion_matrix(prediction$truth, prediction$response, prediction$positive)$matrix, self$beta)
})
)
# add it to the dictionary
mlr3::mlr_measures$add("classif.custom_fbeta", MeasureCustomFbeta)
Test:
# get data
data("Sonar", package = "mlbench")
# make task
task = TaskClassif$new(id = "Sonar", Sonar, target = "Class", positive = "R")
# make learner
learner = lrn("classif.rpart", predict_type = "response")
# predict
pred = learner$train(task)$predict(task)
pred$confusion
#> truth
#> response R M
#> R 87 16
#> M 10 95
# measure "classif.beta
measure_old <- msr("classif.fbeta")
pred$score(measure_old)
#> classif.fbeta
#> 0.87
# customized measure
measure_new <- msr("classif.custom_fbeta", beta=1.5)
pred$score(measure_new)
#> classif.custom_fbeta
#> 0.8801556