I have a dataframe containing a long list of binary variables. Each row represents a participant, and columns represent whether a participant made a certain choice (1) or not (0). For the sakes of simplicity, let's say there's only four binary variables and 6 participants.
df <- data.frame(a = c(0,1,0,1,0,1),
b = c(1,1,1,1,0,1),
c = c(0,0,0,1,1,1),
d = c(1,1,0,0,0,0))
>df
# a b c d
# 1 0 1 0 1
# 2 1 1 0 1
# 3 0 1 0 0
# 4 1 1 1 0
# 5 0 0 1 0
# 6 1 1 1 0
In the dataframe, I want to create a list of columns that reflect each unique combination of variables in df (i.e., abc, abd, bcd, cda). Then, for each row, I want to add value "1" if the row contains the particular combination corresponding to the column. So, if the participant scored 1 on "a", "b", and "c", and 0 on "d" he would have a score 1 in the newly created column "abc", but 0 in the other columns. Ideally, it would look something like this.
>df_updated
# a b c d abc abd bcd cda
# 1 0 1 0 1 0 0 0 0
# 2 1 1 0 1 0 1 0 0
# 3 0 1 0 0 0 0 0 0
# 4 1 1 1 0 1 0 0 0
# 5 0 0 1 0 0 0 0 0
# 6 1 1 1 0 0 0 0 0
The ultimate goal is to have an idea of the frequency of each of the combinations, so I can order them from the most frequently chosen to the least frequently chosen. I've been thinking about this issue for days now, but couldn't find an appropriate answer. I would very much appreciate the help.