I am writing some CUDA code for finding the 3 parameters of a circle (centre X,Y & radius) from many (m) measurements of positions around the perimeter. As m > 3 I am (successfully) using Singular Value Decomposition (SVD) for this purpose (using the cuSolver library). Effectively I am solving m simulaneous equations with 3 unknowns.
However, not all of my perimeter positions are valid (say q of them), and so I have to go through my initial set of m measurements and remove the q invalid ones. This involves moving the size m data array from the card to the host, processing linearly to remove the q invalid entries and then re loading the smaller (m-q) array back onto the card...
My question is; if I were to set all terms on both sides of the q invalid equations to zero, could I just run the m equations (including the zeros) through my SVD analysis (without the data transfer etc) or would this cause other problems?
My instinct tells me that this is a bit like applying weights to the data but instinct and SVD are not terms that sit well together in my experience...
I am hesitant just to try this as I don't know if it will work in some cases and not in others...