In k operations you can get all values of N in [-(2^k)+1, 2^k].
Notice that abs(A) + abs(B) = 2^k for all possible k paths, and that A & B exactly cover the range [-(2^k)+1, 2^k] in the set of paths of length k.
k=0: (1,0)
k=1: (1,-1), (2,0)
k=2: (1,-3), (2,-2), (3,-1), (4,0)
etc...
Given N we can find the minimum k via log. Then we know the final pair is (N, N - 2^k) (or (N-2^k, N) if N <= 0). It's easy to follow the path back up to k=0 because one of the two elements will be out of range for the next smaller k.
E.g., N = 35.
Log2(35) = 5.13, so we use k=6.
2^6 = 64, so our final pair is (35, -29)
(35,-29) -> (3,-29) -> (3, -13) -> (3, -5) -> (3,-1) -> (1,-1) -> (1,0)
Figuring out k is O(1), finding the path is O(k) which is O(log(abs(N)).
It's not likely you need to prove anything in an interview, but if you did, you could use this:
By observation: A - B = 2^k for k steps observed for small k.
Then via induction: we have some valid (A, B) s.t. A-B = 2^k. Then L gets us (2A-B, B), but 2A-B-B = 2A-2B = 2(A-B) = 2^(k+1) as desired. Similarly for R.