I am running this code in order to calculate MLE for Beta Binomial distribution in a Zero-Inflated Model. However I am getting some error for a specific data. Would you please help me out? Here is the R code:
type = "zi"; lowerbound = 0.01; upperbound = 10000;
n=27.59554;alpha1=19.22183;alpha2=41.90441;
x=c(9, 12, 13, 11, 12, 0, 11, 0, 11, 0, 7, 12, 0, 11, 12, 0, 6, 2, 6, 2, 0, 0,
9, 10, 10, 0, 0, 0, 10, 11)
N = length(x)
t = x[x > 0]
m = length(t)
neg.log.lik <- function(y)
{
n1 = y[1]
a1 = y[2]
b1 = y[3]
logA = lgamma(a1 + n1 + b1) + lgamma(b1)
logB = lgamma(a1 + b1) + lgamma(n1 + b1)
ans = m * log(1 - exp(logB - logA)) + m * logA - m *
lgamma(n1 + 1) - sum(lgamma(t + a1)) - sum(lgamma(n1 -
t + b1)) - m * lgamma(a1 + b1) + sum(lgamma(t + 1)) +
sum(lgamma(n1 - t + 1)) + m * lgamma(a1)
return(ans)
}
gp <- function(y)
{
#n1=27.59554;a1=19.22183;b1=41.90441;
n1 = y[1]
a1 = y[2]
b1 = y[3]
logA = lgamma(a1 + n1 + b1) + lgamma(b1)
logB = lgamma(a1 + b1) + lgamma(n1 + b1)
dn = -m * exp(logB - logA) * (digamma(n1 + b1) - digamma(a1 +
n1 + b1))/(1 - exp(logB - logA)) - m * digamma(n1 +
1) - sum(digamma(n1 + b1 - t)) + sum(digamma(n1 -
t + 1)) + m * digamma(a1 + n1 + b1)
da = -m * exp(logB - logA) * (digamma(a1 + b1) - digamma(a1 +
n1 + b1))/(1 - exp(logB - logA)) - sum(digamma(t +
a1)) - m * digamma(a1 + b1) + m * digamma(a1 + n1 +
b1) + m * digamma(a1)
db = -m * exp(logB - logA) * (digamma(a1 + b1) + digamma(n1 +
b1) - digamma(a1 + n1 + b1) - digamma(b1))/(1 - exp(logB -
logA)) + m * digamma(b1) - sum(digamma(n1 - t + b1))-
m * digamma(a1 + b1) + m * digamma(a1 + n1 + b1)
return(c(dn, da, db))
}
estimate = stats::optim(par = c(n, alpha1, alpha2), fn = neg.log.lik,
gr = gp, method = "L-BFGS-B", lower = c(max(x) - lowerbound,
lowerbound, lowerbound), upper = c(upperbound, upperbound, upperbound))
The error is : Error in stats::optim(par = c(n, alpha1, alpha2), fn = neg.log.lik, gr = gp, : non-finite value supplied by optim In addition: Warning message: In digamma(n1 + b1 - t) : NaNs produced
Do you have any idea? appretiate any suggestions