I am trying to follow the equations on this paper here , to calculate the historical volatility for power time series data.
The statistical description of the data as follows :
count 9855.000000
mean 291.135088
std 187.503344
min 0.000000
25% 112.408512
50% 332.370871
75% 449.527323
max 601.370058
Here is my implementation:
# Computing Volatility
window_size=27
VOLATILITY = pd.DataFrame()
VOLATILITY['PV']= data
#'intra-hour
# Compute the logarithmic value
VOLATILITY['Log_IA'] = np.log(VOLATILITY['PV'] / VOLATILITY['PV'].shift(1))
# Compute Volatility using the pandas rolling standard deviation function
VOLATILITY['intra-hour'] = VOLATILITY['Log_IA'].rolling(window=window_size).std() * np.sqrt(window_size)# *100
My data have 1 year of half-hourly observations for 27 steps for each day
Here is an example of the output I got for 1 selected day where the NaN problem exists
Timestamp PV Log_IA intra-hour
2019-03-01 06:00:00 0.000000 NaN NaN
2019-03-01 06:30:00 2.946333 inf NaN
2019-03-01 07:00:00 20.963667 1.962229 NaN
2019-03-01 07:30:00 38.284333 0.602250 NaN
2019-03-01 08:00:00 38.224667 -0.001560 NaN
2019-03-01 08:30:00 54.486667 0.354475 NaN
2019-03-01 09:00:00 54.608333 0.002230 NaN
2019-03-01 09:30:00 55.290667 0.012418 NaN
2019-03-01 10:00:00 54.317333 -0.017761 NaN
2019-03-01 10:30:00 54.680333 0.006661 NaN
2019-03-01 11:00:00 42.142333 -0.260451 NaN
2019-03-01 11:30:00 44.569000 0.055986 NaN
2019-03-01 12:00:00 36.988333 -0.186436 NaN
2019-03-01 12:30:00 35.802000 -0.032599 NaN
2019-03-01 13:00:00 29.006667 -0.210478 NaN
2019-03-01 13:30:00 43.254333 0.399572 NaN
2019-03-01 14:00:00 45.246333 0.045024 NaN
2019-03-01 14:30:00 29.768333 -0.418676 NaN
2019-03-01 15:00:00 37.510667 0.231180 NaN
2019-03-01 15:30:00 31.937000 -0.160860 NaN
2019-03-01 16:00:00 39.990333 0.224873 NaN
2019-03-01 16:30:00 32.263000 -0.214717 NaN
2019-03-01 17:00:00 40.707333 0.232487 NaN
2019-03-01 17:30:00 14.551333 -1.028726 NaN
2019-03-01 18:00:00 10.294333 -0.346089 NaN
2019-03-01 18:30:00 2.552667 -1.394455 NaN
2019-03-01 19:00:00 0.036333 -4.252158 NaN
So, why I am getting the NaN as a result for volatility ?
is it a problem with my implementation?