right now I'm trying to convert a SavedModel to TFLite for use on a raspberry pi. The model is MobileNet Object Detection trained on a custom dataset. The SavedModel works perfectly, and retains the same shape of (1, 150, 150, 3)
. However, when I convert it to a TFLite model using this code:
import tensorflow as tf
saved_model_dir = input("Model dir: ")
# Convert the model
converter = tf.lite.TFLiteConverter.from_saved_model(saved_model_dir) # path to the SavedModel directory
tflite_model = converter.convert()
# Save the model.
with open('model.tflite', 'wb') as f:
f.write(tflite_model)
And run this code to run the interpreter:
import numpy as np
import tensorflow as tf
from PIL import Image
from os import listdir
from os.path import isfile, join
from random import choice, random
# Load the TFLite model and allocate tensors.
interpreter = tf.lite.Interpreter(model_path="model.tflite")
interpreter.allocate_tensors()
# Get input and output tensors.
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
input_shape = input_details[0]['shape']
print(f"Required input shape: {input_shape}")
I get an input shape of [1 1 1 3]
, therefore I can't use a 150x150 image as input.
I'm using Tensorflow 2.4 on Python 3.7.10 with Windows 10.
How would I fix this?