I guess I'll hazard an answer, though my understanding may be no more complete than yours!
As far as I understand it (in no small part from Stefan's "Unreasonable Effectiveness of Multiple Dispatch" JuliaCon talk as linked by Oscar in the comments), I would say that it is in part:
As you say, the ability override base functions with your own implementation [and, critically, then have it "just work" (be dispatched to) whenever appropriate thanks to multiple dispatch]
...since this means if you make a custom type and define all the fundamental / primitive operations on that type (as in https://docs.julialang.org/en/v1/manual/interfaces/ -- say +-*/
et al. for numeric types, or getindex
, setindex!
et al. for an array-like type, etc.), then any more complex program built on those fundamentals will also "just work" with your new custom type.
And that in turn means your custom type will also work (AKA compose) with other people's packages without any need for (e.g.) explicit compatibility shims as long as people haven't over-constrained their function argument types (which is, incidentally, why over-constraining function argument types is a Julia antipattern )
Following on 1), the fact that so many Base
methods are also just plain Julia, so will also work with your new custom type as long as the proper fundamental operations are defined
The fact that Julia's base types and methods are generally performant and convenient enough that in many cases there's no need to do anything custom, so you can just put together blocks that all operate on, e.g., plain Julia arrays or tuples or etc.
This last point is perhaps most notable in contrast to a language like Python where, for example, every sufficiently large subset of the ecosystem (numpy, tensorflow, etc.) has their own reimplementation of (e.g.) arrays, which for better performance are all ultimately implemented in some other language entirely (C++, for numpy and TF) and thus probably do not compose with each other.