Let say I have 3 images (an apple, an orange, a banana) and another 1000 arbitrary images. What I want to do is to see if those 1000 arbitrary images contain object(s) similar to the former 3 images, if yes, draw a bounding box to indicate those objects. However, none of these 1003 images or objects are labelled nor have any annotations.
I have do some research on the internet and try to find some deep learning object detection approach (e.g. Faster R-CNN, YOLOv3) but I couldn't think of how they can be related to my task.
I have also notice that there is a term called template matching, but it seems not much related to deep learning.
So my question is:
Is there any good approach or deep learning model that could meet my needs?
Will I be benefit from any pre-trained Faster R-CNN, YOLOv3 models? (e.g. If they are trained by cars, people, dogs, cats image set, will those meaningful features can also apply to new domain?)