I am not sure how to fit my SVM model
with Word2vec
training data set ?what should I put instead of question mark
in below code?
model = gensim.models.Word2Vec(sentences= df['meaningful_words'])
Train_X, Test_X, Train_Y, Test_Y = model_selection.train_test_split(df['y_labels'],df['meaningful_words'],random_state =1,test_size=0.2)
SVM = svm.SVC(C=1.0, kernel='linear', degree=1, gamma= 'auto')
SVM.fit(??,Train_Y)
predictions_SVM = SVM.predict(Test_X)
print("SVM Accuracy Score",accuracy_score(predictions_SVM, Test_Y)*100)
CONFUSION = confusion_matrix(Test_Y, predictions_SVM)