// a, b are polynomes of form {monomialKey: scalar, monomialKey2, scalar2, ...}
// a monomial key is e.g x1y2z2
const add = (a, b) => {
const out = Object.assign({}, a)
Object.entries(b).forEach(([monomialKey, scalar]) => {
out[monomialKey] = (out[monomialKey] || 0) + scalar
if (out[monomialKey] === 0) {
delete out[monomialKey]
}
})
return out
}
// transforms x1y2z2 to {x: 1, y: 2, z: 2}
const parseKey = s => s.match(/[a-z]+\d+/g).reduce((o, kv) => {
const [,varname,deg] = kv.match(/([a-z]+)(\d+)/)
o[varname] = parseInt(deg)
return o
}, {})
const writeKey = o => Object.entries(o).reduce((s, [varname, deg]) => s + varname+deg, '')
// simplify monomial, e.g x1y3*x1 => x2y3
const timesMonomialKey = (iA, iB) => {
const a = parseKey(iA)
const b = parseKey(iB)
const out = {}
;[a,b].forEach(x => Object.entries(x).forEach(([varname, deg]) => {
if (deg === 0) return
out[varname] = (out[varname] || 0) + deg
}))
if (Object.keys(out).length === 0) return writeKey({ x: 0 })
return writeKey(out)
}
// a, b both polynomes
const times = (a, b) => {
const out = {}
Object.entries(a).forEach(([monimalKeyA, sA]) => {
Object.entries(b).forEach(([monimalKeyB, sB]) => {
const key = timesMonomialKey(monimalKeyA, monimalKeyB)
out[key] = (out[key] || 0) + sA * sB
if (out[key] === 0) {
delete out[key]
}
})
})
return out
}
const reduceTree = t => { // of the form [operator, left, right] or val
if (!Array.isArray(t)) {
return typeof(t) === 'string'
? { [writeKey({ [t]: 1 })]: 1 } // x => {x1: 1}
: { [writeKey({ x: 0 })]: t } // 5 => {x0: 5}
}
const [op, leftTree, rightTree] = t
const left = reduceTree(leftTree)
const right = reduceTree(rightTree)
return op === '+' ? add(left, right) : times(left, right)
}
const writePolynomial = o => {
const writeMonomial = ([key, s]) => {
const a = parseKey(key)
const factors = Object.entries(a).flatMap(([varname, deg]) => {
return Array.from({length: deg}).fill(varname)
}).concat(s !== 1 ? s : [])
return factors.reduce((t, next) => ['*', t, next])
}
if (Object.keys(o).length === 0) return 0
return Object.entries(o).map(writeMonomial).reduce((t, next) => ['+', t, next])
}
console.log(writePolynomial(reduceTree(['+', ['+', 'x', 'y'], 'x'])))
//const assert = require('assert')
//assert.deepEqual(parseKey('x0y2z3'), { x: 0, y: 2, z: 3 })
//assert.deepEqual(writeKey({ x: 0, y: 2, z: 3 }), 'x0y2z3')
//assert.deepEqual(timesMonomialKey('x1y2', 'x3z1'), 'x4y2z1')
//assert.deepEqual(timesMonomialKey('x0y0', 'z0'), 'x0')
//assert.deepEqual(timesMonomialKey('x0y0', 'z0x1'), 'x1')
//assert.deepEqual(add({x0: 3, x1: 2}, {x0: 4, x3: 5}), {x0: 7, x1: 2, x3: 5})
//assert.deepEqual(add({x0: 3, y1: 2}, {x0: 4, y2: 5}), {x0: 7, y1: 2, y2: 5})
//assert.deepEqual(add({x0: 1}, {x0: -1}), {})
//assert.deepEqual(times({x0: 3, x1: 2}, {x0: 4, x1: 5}), {x0: 12, x1: 23, x2: 10})
//assert.deepEqual(times(
// {x1y0: 3, x1y1: 2},
// {x1y0: 4, x1y1: 5}),
// {x2: 12, x2y1: 23, x2y2: 10}
//)
//assert.deepEqual(reduceTree('x'), {x1: 1})
//assert.deepEqual(reduceTree(['*', 2, 'x']), {x1: 2})
//assert.deepEqual(reduceTree(['+', 2, 'x']), {x0: 2, x1: 1})
//assert.deepEqual(reduceTree(['+', 'x', ['+', 'y', 'x']]), {x1: 2, y1: 1})
//assert.deepEqual(writePolynomial({ x1y1:1, x1y2: 2}), ['+', ['*', 'x', 'y'], ['*', ['*', ['*', 'x', 'y'], 'y'], 2]])
//assert.deepEqual(writePolynomial(reduceTree(['*', ['*', 'x', 'y'], 0])), 0)
//assert.deepEqual(writePolynomial(reduceTree(['+', ['*', ['*', 'x', 'y'], 0], 2])), 2)
//
//// finally your example :)
//assert.deepEqual(writePolynomial(reduceTree(['+', ['+', 'x', 'y'], 'x'])), ['+', ['*', 'x', 2], 'y'])