I'm building a RNN and I use LSTM. The X matrix has this dimension (1824, 7) instead Y has this dim (1824, 1). This is my model:
num_units = 64
learning_rate = 0.0001
activation_function = 'sigmoid'
adam = Adam(lr=learning_rate)
loss_function = 'mse'
batch_size = 5
num_epochs = 50
# Initialize the RNN
model = Sequential()
model.add(LSTM(units = num_units, activation=activation_function, input_shape=(1824, 7, )))
model.add(LeakyReLU(alpha=0.5))
model.add(Dropout(0.1))
model.add(Dense(units = 1))
# Compiling the RNN
model.compile(optimizer=adam, loss=loss_function, metrics=['accuracy'])
history = model.fit(
X,
y,
validation_split=0.1,
batch_size=batch_size,
epochs=num_epochs,
shuffle=False
)
I know the error is in input_shape parameter. When I try to fit the model I get this error:
ValueError: Input 0 of layer sequential is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: [None, 7]
I have seen similar questions, And I tried to apply some of that changes, such as:
input_dim = X.shape
input_dim=(7,)
input_dim=(1824, 7, 1)
But in any case I got this kind of error. How can I fix it?