I have a problem to solve. I need to visit 7962 places with a vehicle. The vehicle travels with 10km/h and each time I visit one place I stay there for 1 minute. I want to divide those 7962 places into subsets that take will take up to 8 hours. So lets say 200 places take 8 hours I visit them and come back the next day to visit another maybe 250 places(the 200 places subsets will require more distance travelled). For the distance I only care for Euclidean Distances no need to take into account the distance through the road network. A map of the 7962 places
What I have done so far is use the k means clustering algorithm to get good enough subsets and then the Lin Kernighan heuristic (Program Concorde) to find the distance. And then compute times. But my results go from 4 hours to 12 hours. Any idea to make it better? Or a code that does this whole task all together. Propose anything but I am not a programmer I just use Python some times. Set of coordinates : http://www.filedropper.com/wholesetofcoordinates
Coordinates subsets(40 clusters produces with the k means algorithm): http://www.filedropper.com/kmeans40clusters