7

I'm trying to create variational autoencoder and that means I need custom loss function. The problem is that inside loss function I have 2 different losses - mse and divergence. And mse is Tensor and divergence is KerasTensor ( because of dispersion and mu, I get out from encoder ). And I get such errors:

TypeError: Cannot convert a symbolic Keras input/output to a numpy array. This error may indicate that you're trying to pass a symbolic value to a NumPy call, which is not supported. Or, you may be trying to pass Keras symbolic inputs/outputs to a TF API that does not register dispatching, preventing Keras from automatically converting the API call to a lambda layer in the Functional Model.

So here is my architecture:

import tensorflow.keras as keras
from keras.layers import Input, Dense, Flatten, Reshape
from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, Conv2DTranspose
from keras.models import Model
import tensorflow as tf
import keras.backend as K


encoded_dim = 2

class Sampling(keras.layers.Layer):
    """Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""

    def call(self, inputs):
        z_mean, z_log_var = inputs
        batch = tf.shape(z_mean)[0]
        dim = tf.shape(z_mean)[1]
        epsilon = K.random_normal(shape=(batch, dim))
        return z_mean + tf.exp(0.5 * z_log_var) * epsilon


img = Input((28,28,1), name='img')

x = Conv2D(32, (3,3), padding='same', activation='relu')(img)
x = MaxPooling2D()(x)
x = Conv2D(64, (3,3), padding='same', activation='relu')(x)
x = MaxPooling2D()(x)
x = Flatten()(x)
x = Dense(16, activation='relu')(x)
mu = Dense(encoded_dim, name='mu')(x)
sigma = Dense(encoded_dim, name='sigma')(x)
z = Sampling()([mu,sigma])
# print(mu)
xx = Input((encoded_dim,))

x = Dense(7*7*64, activation='relu')(xx)
x = Reshape((7,7,64))(x)

x = Conv2DTranspose(64, 3, activation="relu", strides=2, padding="same")(x)
x = Conv2DTranspose(32, 3, activation="relu", strides=2, padding="same")(x)

out = Conv2DTranspose(1, 3, activation="sigmoid", padding="same")(x)

encoder = Model(img,z, name='encoder')
decoder = Model(xx,out,name='decoder')

autoencoder = Model(img,decoder(encoder(img)),name='autoencoder')

And the loss function:

def vae_loss(x, y):
    loss = tf.reduce_mean(K.square(x-y))
    kl_loss = -0.5 * tf.reduce_mean(1 + sigma - tf.square(mu) - tf.exp(sigma))
    print(type(loss))
    print(type(kl_loss))
    return loss + kl_loss

autoencoder.compile(optimizer='adam',
                    loss = vae_loss)

autoencoder.fit(train,train,
                epochs=1,
                batch_size=60,
                shuffle=True,
                verbose = 2)

Types of loss and lk_loss:

class 'tensorflow.python.framework.ops.Tensor'

class 'tensorflow.python.keras.engine.keras_tensor.KerasTensor'

1 Answers1

3

you need to pass mu and sigma to your loss function. vae_loss is now accepting 4 inputs:

def vae_loss(x, y, mu, sigma):
    loss = tf.reduce_mean(K.square(x-y))
    kl_loss = -0.5 * tf.reduce_mean(1 + sigma - tf.square(mu) - tf.exp(sigma))
    return loss + kl_loss

you can use it inside your model simply using autoencoder.add_loss.

It's important also that encoder returns not only z but also mu and sigma.

z, mu, sigma = encoder(img)
out = decoder(z)
autoencoder = Model(img, out, name='autoencoder')
autoencoder.add_loss(vae_loss(img, out, mu, sigma))  # <======= add_loss
autoencoder.compile(loss=None, optimizer='adam')

here the running notebook https://colab.research.google.com/drive/1r5lMZ2Dc_Lq4KJDqiirXla1qfDVmdwxW?usp=sharing

Marco Cerliani
  • 21,233
  • 3
  • 49
  • 54