I am working with the R programming language. I am trying to learn how to make a "confusion matrix" for multiclass variables (e.g. How to construct the confusion matrix for a multi class variable).
Suppose I generate some data and fit a decision tree model :
#load libraries
library(rpart)
library(caret)
#generate data
a <- rnorm(1000, 10, 10)
b <- rnorm(1000, 10, 5)
d <- rnorm(1000, 5, 10)
group_1 <- sample( LETTERS[1:3], 1000, replace=TRUE, prob=c(0.33,0.33,0.34) )
e = data.frame(a,b,d, group_1)
e$group_1 = as.factor(d$group_1)
#split data into train and test set
trainIndex <- createDataPartition(e$group_1, p = .8,
list = FALSE,
times = 1)
training <- e[trainIndex,]
test <- e[-trainIndex,]
fitControl <- trainControl(## 10-fold CV
method = "repeatedcv",
number = 5,
## repeated ten times
repeats = 1)
#fit decision tree model
TreeFit <- train(group_1 ~ ., data = training,
method = "rpart2",
trControl = fitControl)
From here, I am able to store the results into a "confusion matrix":
pred <- predict(TreeFit,test)
table_example <- table(pred,test$group_1)
This satisfies my requirements - but this "table" requires me to manually calculate the different accuracy metrics of "A", "B" and "C" (as well as the total accuracy).
My question: Is it possible to use the caret::confusionMatrix()
command for this problem?
e.g.
pred <- predict(TreeFit, test, type = "prob")
labels_example <- as.factor(ifelse(pred[,2]>0.5, "1", "0"))
con <- confusionMatrix(labels_example, test$group_1)
This way, I would be able to directly access the accuracy measurements from the confusion matrix. E.g. metric = con$overall[1]
Thanks