I have a 2D map where each pixel contains a spectrum. I want to convert the data from this format:
X Y Wave Intensity
-34727.180000 -4204.820000 1.484622 139.193512
-34727.180000 -4204.820000 1.484043 120.991280
-34727.180000 -4204.820000 1.483465 125.905304
-34726.180000 -4204.820000 1.483465 131.262970
-34726.180000 -4204.820000 1.482887 122.784081
-34726.180000 -4204.820000 1.482309 129.853088
-34725.180000 -4204.820000 1.483465 129.655670
-34725.180000 -4204.820000 1.482887 119.567032
-34725.180000 -4204.820000 1.482309 126.097000
-34727.180000 -4203.820000 1.463490 124.331985
-34727.180000 -4203.820000 1.462927 138.189377
-34727.180000 -4203.820000 1.462364 127.824867
to a dictionary where the keys are a tuple of the X,Y coordinate, and the values are a 3-by-2 numpy array. For example:
DICT = {
(-34727.180000, -4204.820000): [[1.484622, 139.193512], [1.484043, 120.991280], [1.483465, 125.905304]],
(-34726.180000, -4204.820000): [[1.482887, 122.784081], [1.482887, 122.784081], [1.482309, 129.853088]],
(-34725.180000, -4204.820000): [[1.483465, 129.655670], [1.482887, 119.567032], [1.482309, 126.097000]],
(-34727.180000, -4203.820000): [[1.463490, 124.331985], [1.462927, 138.189377], [1.462927, 138.189377]]}
This example is simplified; my actual map contains more than four pixels (X,Y coordinates), and there are 512 Wave-Intensity pairs for each coordinate. I hope the solution can be generalized from a four pixel map to a 400 pixel map, and each array from a 3-by-2 numpy array to an 512-by-2 numpy array.
The ultimate goal is to take the Wave-Intensity pairs for each coordinate, fit them to a Gaussian distribution, find the (maximum) amplitude for this distribution, and plot that maximum for each X,Y coordinate. This part of the problem does not need to be included in a solution, but if someone adds a solution to this part of the problem, that would be excellent!
I am open to approaches that do not involve a dictionary (e.g. a 4D numpy array), but at the moment I cannot see another way. Feel free to recommend an alternate approach. Currently, I am importing the data in its original format using pandas
:
import pandas as pd
IN_PATH = r'PATH_TO_FILE'
FNAME = r'\FILENAME.txt'
data = pd.read_csv(IN_PATH+FNAME, sep='\t', skiprows=1)
data.columns = ["X", "Y", "Wave", "Intensity"]
Thanks in advance!