I am working on an image classification problem and was using 90% pre-trained Keras mobilenet v3 on ImageNet and remaining 10% layers are made trainable whilst applying dropout of 0.2. I was wondering how this was being handled in the backend.
MobileNetV3Small(input_shape=(IMG_HEIGHT, IMG_WIDTH, DEPTH),
alpha=1.0,
minimalistic=False,
include_top=False,
weights='imagenet',
input_tensor=None,
pooling='max',
dropout_rate=0.2)