Following the model-based recursive partitioning in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6015941/ I want to replicate the following code:
sim_data <- function(n=2000){
x1 <- rnorm(n)
x2 <- rbinom(n,1,0.3)
x3 <- runif(n)
x4 <- rnorm(n)
t <- rbinom(n,1,0.5)
z <- 1-x2+x1+2*(x1>=0)*x2*t-2*(x1<0)*x2*t
pr <- 1/(1+exp(-z))
y <- as.factor(rbinom(n,1,pr))
data.frame(x1,x3,x2=as.factor(x2),x4, t=factor(t,labels=c("C","A")),y,z)
}
dt <- sim_data()
dt.num = as.data.frame(sapply(dt, as.numeric))
dt.num$y <- dt.num$y-1 #only to convert outcome 1,2 into 0,1
mbase <- glm(y~t, data=dt.num,
family = binomial())
round(summary(mbase)$coefficients,3)
library("model4you")
pmtr <- pmtree(mbase, zformula = ~. ,
data = dt.num,
control = ctree_control(minbucket = 250))
plot(pmtr, terminal_panel = node_pmterminal(pmtr,
plotfun = binomial_glm_plot,
confint = TRUE))
However, the following inexplicable error occurs:
Error in .Call.graphics(C_palette2, .Call(C_palette2, NULL)) :
invalid graphics state
I was looking for a solution to this problem in the post Persistent invalid graphics state error when using ggplot2. But the problem persists.
Any clue?
Thank you in advance