I am pretty new to allennlp and I am struggling with building a model that does not seem to fit perfectly in the standard way of building model in allennlp.
I want to build a pipeline model using NLP. The pipeline consists basically of two models, let's call them A and B. First A is trained and based on the prediction of the full train A, B trained afterwards.
What I have seen is that people define two separate models, train both using the command line interface allennlp train ...
in a shell script that looks like
# set a bunch of environment variables
...
allennlp train -s $OUTPUT_BASE_PATH_A --include-package MyModel --force $CONFIG_MODEL_A
# prepare environment variables for model b
...
allennlp train -s $OUTPUT_BASE_PATH_B --include-package MyModel --force $CONFIG_MODEL_B
I have two concerns about that:
- This code is hard to debug
- It's not very flexible. When I want to do a forward pass of the fully trained model I have write another script that bash script that does that.
Any ideas on how to do that in a better way?
I thought about using a python script instead of a shell script and invoke allennlp.commands.main(..)
directly. Doing so at least you have a joint python module you can run using a debugger.