I am using Matlab's backslash operator to solve a system of equations written as two matrices M1
and M2
. These two matrices are square and tridiagonal, and so I have defined them as sparse. For example, with the dimensions of each being 5x5, they are defined as follows, with the values in each entry being dependent on some constant a
:
N = 5;
a = 1e10;
M1 = spdiags([-a*ones(N,1)... % Sub diagonal
(1 + 2*a)*ones(N,1)... % Main Diagonal
-a*ones(N,1)],... % Super diagonal
-1:1,N,N);
M2 = spdiags([+a*ones(N,1)...
(1 - 2*a)*ones(N,1)...
+a*ones(N,1)],...
-1:1,N,N);
M_out = M1\M2;
So for example, M1
looks like the following in full form:
>> full(M1)
ans =
1.0e+10 *
2.0000 -1.0000 0 0 0
-1.0000 2.0000 -1.0000 0 0
0 -1.0000 2.0000 -1.0000 0
0 0 -1.0000 2.0000 -1.0000
0 0 0 -1.0000 2.0000
Now, if I examine the number of non-zero entries in the result M_out
, then I can see they are all non-zero, which is fine:
>> nnz(M_out)
ans =
25
The problem is that I also need to do this for larger values of the constant a
. However, if, for example, a=1e16
instead, then the off-diagonal entries of M_out
are automatically set to zero, presumably because they have become too small:
>> nnz(M_out)
ans =
5
Is there a better way in Matlab of going about this problem of inverting sparse matrices? Or am I using the backslash operator in the wrong way?