I am trying to setup a PANDAS project that I can use to compare and return the differences in excel and csv files over time. Currently I load the excel/csv files into pandas and assign them a version column. I assign them a "Version" column because in my last step, I want the program to create me a file containing only what has changed in the "new" version file so that I do not have to update the entire database, only the data points that have changed.
old = pd.read_excel(landdata20201122.xlsx')
new = pd.read_excel(landdata20210105.xlsx')
old['version'] = "old"
new['version'] = "new"
I merge the sheets into one, I then drop duplicate rows based on all the columns in the original files. I have to subset the data because if the program looks at my added version column, it will not be seen as a duplicate row. Statement is listed below
df2 = df1.drop_duplicates(subset=["UWI", "Current DOI Partners", "Encumbrances", "Lease Expiry Date", "Mineral Leases", "Operator", "Attached Land Rights", "Surface Leases"])
df2.shape
I am wondering if there is a quicker way to subset the data, basically the way I currently have it setup, I have to list each column title. Some of my sheets have 100+ columns, so it is a lot of work when I only want it to negate 1 column. Is there a way that I can populate all the column titles and remove the ones I do not want looked at? Or is there a way to enter the columns I DO NOT want compared in the drop duplicates command instead of entering all the columns except one?
If I can just list the columns I do not want to compare, I will be able to use the same script for much more of the data that I am working with as I will not have to edit the drop_duplicates statement each time I compare sheets.
Any help is appreciated, thank you in advance!