in the DVBS2 Standard the SRRC filter is defined as
How can i find the filter's time domain coefficients for implementation? The Inverse Fourier transform of this is not clear to me.
in the DVBS2 Standard the SRRC filter is defined as
How can i find the filter's time domain coefficients for implementation? The Inverse Fourier transform of this is not clear to me.
For DVBS2 signal you can use RRC match filter before timing recovery. For match filter, you can use this expression:
For example for n_ISI = 32 and Roll of factor = 0.25 with any sample per symbol you can use this Matlab code:
SPS = 4; %for example
n_ISI=32;
rolloff = 0.25;
n = linspace(-n_ISI/2,n_ISI/2,n_ISI*SPS+1) ;
rrcFilt = zeros(size(n)) ;
for iter = 1:length(n)
if n(iter) == 0
rrcFilt(iter) = 1 - rolloff + 4*rolloff/pi ;
elseif abs(n(iter)) == 1/4/rolloff
rrcFilt(iter) = rolloff/sqrt(2)*((1+2/pi)*sin(pi/4/rolloff)+(1-2/pi)*cos(pi/4/rolloff)) ;
else
rrcFilt(iter) = (4*rolloff/pi)/(1-(4*rolloff*n(iter)).^2) * (cos((1+rolloff)*pi*n(iter)) + sin((1-rolloff)*pi*n(iter))/(4*rolloff*n(iter))) ;
end
end
But if you want to use SRRC, there are two ways: 1. You can use its frequency representation form if you use filtering in the frequency domain. And for implementation, you can use the expression that you've noted. 2. For time-domain filtering, you should define the FIR filter with its time representation sequence. The time representation of such SRRC pulses is shown to adopt the following form: