My problem is, that I have about 50.000 non-linear data points (x,y,z) with z depending on the independent variables x and y. From one side, so from a two-dimensional perspective, the data points look like a polynomial of degree 7. Unfortunately I cannot show this data.
My goal is to find a polynomial in 3D that can fit this data, without knowing the degree of the polynom beforehand. So I would like a function like f(x,y) = ax^3 + bx^2 + cx^2y + dy^3 + ...
Unfortunately, in python I have only found something like surface-fitting, where you need the degree beforehand. Or something like transforming the polynomial problem into a mutlivariable linear problem with scikit-learn. The later had very poor results with my dataset.
Does anyone know of a better method for this problem? Many thanks in advance.