Goal: To create a variable named 'duration'--to count the number of months the 'previous month's value (0 or 1)' was consistent, (a) only when there are at least 3 consecutive observations in the past for a given month and (b) counting as '0' when the previous month's value was 1.
For instance, a sample structure of the data looks like:
structure(list(group = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2,
2, 2, 2, 2, 2), month = c(2, 4, 5, 6, 7, 10, 11, 12, 13, 14,
7, 10, 11, 12, 13, 14, 15), value= c(NA, 0, 1, 1, 0, 0, 0,
0, 0, 0, NA, 1, 1, 0, 0, 0, 1)), class = "data.frame", row.names = c(NA,
-17L), codepage = 65001L)
The end result would look like (creating the new variable, 'duration'):
╔═══════╦═══════╦═══════╦════════════╦═══════════════════════════════════════════════════════════════════════╗
║ group ║ month ║ value ║ 'duration' ║ explanation ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 2 ║ na ║ na ║ ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 4 ║ 0 ║ na ║ There is no consecutive month in the past for this month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 5 ║ 1 ║ na ║ There is only 1 consecutive month in the past (4) for this month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 6 ║ 1 ║ na ║ There are only 2 consecutive months in the past (5, 6) for this month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 7 ║ 0 ║ 0 ║ The previous month's value is 1, so the duration becomes 0 ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 10 ║ 0 ║ na ║ There is no consecutive month in the past for this month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 11 ║ 0 ║ na ║ There is only 1 consecutive month in the past (10) for this month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 12 ║ 0 ║ na ║ There is only 2 consecutive months in the past (10, 11) ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 13 ║ 0 ║ 3 ║ The previous month's (month 12) value (0) is consistent for 3 months ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 1 ║ 14 ║ 0 ║ 4 ║ The previous month's (month 13) value (0) is consistent for 4 months ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 7 ║ na ║ na ║ ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 10 ║ 1 ║ na ║ There is no consecutive month in the past ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 11 ║ 1 ║ na ║ There is only 1 consecutive month in the past ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 12 ║ 0 ║ na ║ There is only 2 consecutive months in the past ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 13 ║ 0 ║ 1 ║ The previous month's (month 12) value (0) is consistent for 1 month ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 14 ║ 0 ║ 2 ║ The previous month's (month 13) value (0) is consistent for 2 months ║
╠═══════╬═══════╬═══════╬════════════╬═══════════════════════════════════════════════════════════════════════╣
║ 2 ║ 15 ║ 1 ║ 3 ║ The previous month's (month 14) value (0) is consistent for 3 months ║
╚═══════╩═══════╩═══════╩════════════╩═══════════════════════════════════════════════════════════════════════╝
What I have tried applying was (courtesy of @Will):
setDT(sample)
sample[, month_consecutive := NA]
sample[, value_stable_rows := unlist(lapply(sample[, rle(value), by = group]$length, seq))]
sample[, month_consecutive := unlist(lapply(sample[, rle(diffinv(diff(month) != 1)), by = group]$lengths, seq))]
sample[, value_stable_rows := shift(value_stable_rows, type = "lag"), by = group]
sample[, month_consecutive := shift(month_consecutive, type = "lag"), by = group]
sample[, duration := ifelse(value_stable_rows < month_consecutive , value_stable_rows, month_consecutive)]
sample[, month_lag1 := shift(month, n = 1)]
sample[, month_lag2 := shift(month, n = 2)]
sample[, month_lag3 := shift(month, n = 3)]
sample[!((month - month_lag1 == 1) & (month_lag1 - month_lag2 == 1) & (month_lag2 - month_lag3 == 1)), duration := NA]
sample[, .(group, month, value, duration )]
The above code meets 'Goal(a)' but not 'Goal(b)'. I wanted to ask your advice on what could be added to operationalize counting as '0' when the previous month's value was 1.