How can you feed 2 inputs within a tflite model.
I built a tf model => convert into tflite
text = tf.keras.Input((64), name="text")
intent = tf.keras.Input(shape=(25,), name="intent")
layer = tf.keras.layers.Embedding(dataset.vocab_size, 128, name="embedding_layer")(text)
layer = tf.keras.layers.LocallyConnected1D(256, kernel_size=1, strides=1, padding="valid", activation="relu")(layer)
layer = tf.keras.layers.SpatialDropout1D(0.1)(layer)
layer = tf.keras.layers.GlobalAveragePooling1D()(layer)
layer = tf.keras.layers.Dense(512, activation="relu")(layer)
layer = tf.keras.layers.Dropout(0.1)(layer)
layer = tf.keras.layers.concatenate([layer, intent])
output_layer = tf.keras.layers.Dense(units=dataset.max_labels, activation="softmax")(layer)
model = tf.keras.models.Model(inputs=[text, intent], outputs=[output_layer])
My model has 2 inputs.
interpreter.get_input_details():
[{'name': 'text',
'index': 0,
'shape': array([ 1, 64], dtype=int32),
'shape_signature': array([ 1, 64], dtype=int32),
'dtype': numpy.float32,
'quantization': (0.0, 0),
'quantization_parameters': {'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32),
'quantized_dimension': 0},
'sparsity_parameters': {}},
{'name': 'intent',
'index': 1,
'shape': array([ 1, 32], dtype=int32),
'shape_signature': array([ 1, 32], dtype=int32),
'dtype': numpy.float32,
'quantization': (0.0, 0),
'quantization_parameters': {'scales': array([], dtype=float32),
'zero_points': array([], dtype=int32),
'quantized_dimension': 0},
'sparsity_parameters': {}}]
How can I feed my tflite model with 2 inputs ? Using set_tensor we can only pass 1 input...
interpreter.set_tensor(interpreter.get_input_details()[0]['index'], input_text)
i want something like
interpreter.set_tensor([interpreter.get_input_details()[0]['index'], interpreter.get_input_details()[1]['index']], [input_text, input_intent])
Thanks guys =D