QtConcurrent doesn't deal with any of it, unfortunately.
In a most general approach, you only need some worker machines on the network, and a way to connect to them via ssh (if they are Unix), or via Windows credentials (on a Windows network). At that point you can send a binary to the worker and execute it. Doing this in Qt is of course possible, but you'd need to wrap some other libraries (e.g. Samba for RPC calls, or openssh) to do that.
No matter whether the software can "distribute itself" or is otherwise installed on the workers, you got it running on multiple machines. Now they have to communicate, with one being a master, and the other being slaves. Master selection could be done via command line arguments, or even by having two binaries: workers that include only the back-end functionality, and a front end that includes both (and has some sort of UI).
At that point you can leverage Qt Remote Objects, the idea being what you'd "distribute" is QObject
s that do work in the slots, and return results either via return value of the slot, by sending a signal. It's not as convenient as using QtConcurrent directly, but in general there's no way to distribute work transparently without some introspection that C++ doesn't quite provide yet.
I know that OpenMPI is not a Qt-based solution, it certainly works and makes life easy, and for sure it can interoperate with Qt code - you can even distribute methods and lambdas that way (with some tricks).
If you manage worker objects encapsulated as QObject
s, it's not too hard to distribute the work in e.g. round-robin fashion. You could then have a front-end QObject
that acts as a proxy: you submit all the work to it, and it signals all the results, but internally it invokes the slots on the remote QObject
s.
Would you be interested in a demo? I could write one up if there was enough demand :)