I want to find equation of scaled ( smaller) ellipse inscribed in another ellipse with 2 common points
I have system of 2 trigonometric equations ( eq1 and eq2) and 2 variables:
- s ( it is a scaling factor of second ellipse) s = a'/a
- t ( it is a parameter of ellipse )
kill(all);
remvalue(all);
ratprint:false;
numer:true$
GivePointOfEllipse(a,b, t):= a*cos(t) + b*sin(t)*%i$
/* trigonometric functions in Maxima CAS use radians */
deg2rad(t):= float(t*2*%pi/360)$
theta :deg2rad(30) $ /* theta is the angle between */
a:3$
b:2$
z1: GivePointOfEllipse(a, b, t)$
/* */
x1:realpart(z1)$
y1:imagpart(z1)$
/* system of 2 trigonometric equations */
eq1: x1 = s*a*cos(t)*cos(theta) - s*b*sin(t) * sin(theta)$
eq2: y1 = s*a*cos(t)*sin(theta) + s*b*sin(t) * cos(theta)$
I can solve it using solve:
solvetrigwarn: false$
sol:solve([eq1,eq2],[s,t])$
but it gives no result ( empty list). So I use solver:
load(Solver)$
ss:Solver([eq1,eq2],[s,t])$
It gives some result, the relation between s and t:
ss;
(%o37) [[s = -(42978006*cos(t))/(14326002*sin(t)-37220045*cos(t)),
[(28652004*sin(t)^2+64467009*cos(t)^2)
/(14326002*sin(t)-37220045*cos(t))]]]
so I check it :
fs(t):= 42978006*cos(t)/( 14326002*sin(t) -37220045*cos(t));
plot2d (fs(t), [t, 0, 2*%pi])$
fs2(t):=(28652004 *(sin (t))^2 + 64467009*(cos(t))^2)/ (14326002*sin(t)-37220045* cos(t))$
plot2d (fs2(t), [t, 0, 2*%pi])$
I think that s should be a positive number smaller then 1. For example
- for theta = 30 degrees s = 0.8117
- for theta = 5 degrees s = 0.942
Value of parameter t is not important here.
How can I do it ? TIA