Currently, the product team working on the public document/tutorial on How can we parameterise Spark jobs.
For now, you can use the job definition JSON file to parameterize the Spark job. Attached one sample file:
{
"targetBigDataPool": {
"referenceName": "yifso-1019",
"type": "SparkComputeReference"
},
"requiredSparkVersion": "2.4",
"jobProperties": {
"name": "job definition sample",
"file": "wasbs://ContainerName@StorageName.blob.core.windows.net/SparkSubmission/artifact/default_artifact.jar",
"className": "sample.LogQuery",
"args": [],
"jars": [],
"pyFiles": [],
"archives": [],
"files": [],
"conf": {
"spark.hadoop.fs.azure.account.key.StorageName.blob.core.windows.net": "StorageAccessKey"
},
"numExecutors": 2,
"executorCores": 4,
"executorMemory": "14g",
"driverCores": 4,
"driverMemory": "14g"
}
}
The job definition JSON can be modified, imported, and run directly.