I'm currently reading through John C. Mitchell's Foundations for Programming Languages. Exercise 2.2.3, in essence, asks the reader to show that the (natural-number) exponentiation function cannot be implicitly defined via an expression in a small language. The language consists of natural numbers and addition on said numbers (as well as boolean values, a natural-number equality predicate, & ternary conditionals). There are no loops, recursive constructs, or fixed-point combinators. Here is the precise syntax:
<bool_exp> ::= <bool_var> | true | false | Eq? <nat_exp> <nat_exp> |
if <bool_exp> then <bool_exp> else <bool_exp>
<nat_exp> ::= <nat_var> | 0 | 1 | 2 | … | <nat_exp> + <nat_exp> |
if <bool_exp> then <nat_exp> else <nat_exp>
Again, the object is to show that the exponentiation function n^m cannot be implicitly defined via an expression in this language.
Intuitively, I'm willing to accept this. If we think of exponentiation as repeated multiplication, it seems like we "just can't" express that with this language. But how does one formally prove this? More broadly, how do you prove that an expression from one language cannot be expressed in another?